“多物理场高效飞行科学基础与调控机理”重大研究计划面向一小时左右全球抵达高速民航和航班化天地往返运输国家重大需求,聚焦多物理场*高效飞行重大基础问题,通过飞行器构型连续变化,结合主动流动调控与智能控制实现飞行器跨大空域、宽速域、可重复的高效智能飞行,为航天运输系统创新发展提供理论基础与技术支撑。
一、科学目标
瞄准中国航天运输系统国家重大需求,提出跨域高效智能飞行新思路,面向跨域、变构、可重复飞行关键特征,建立非定常空气动力学模型,发展多物理参数实时感知与智能控制理论,突破主动热防护、变构型机构-结构设计、主动流动控制和电磁力热环境模拟与科学实验等关键技术,取得一批多物理场高效飞行原创性成果,牵引学科深度融合与创新发展,革新面向航天巨系统的智能系统工程范式,为我国未来航天运输系统提供关键理论、方法、技术和人才队伍储备,促进中国航天运输系统发展规划的顺利实施。
二、核心科学问题
本重大研究计划围绕以下三个核心科学问题开展研究:
(一)变构型材料与机构的多物理场耦合机理
揭示柔性材料-变形机构在复杂约束下热防护、变形机构与结构、刚柔耦合等机理,建立结构健康监测、耐久性与损伤容限评价新方法,满足对飞行器变构材料与机构的极限需求。
(二)跨域非稳态流动模型及调控机制
研究复杂时变边界条件下飞行器流动与飞行变形的相互作用机制,发展主动流动调控手段,实现气动特性精确预示和高效降热减阻。
(三)变构与飞行的一体化智能控制
揭示强不确定环境下飞行动力学耦合控制机理,突破跨域无缝自主导航及环境-任务自匹配的在线自主规划决策等关键技术,构建变构型与飞行器的一体化智能控制方法。