专题专栏

首页 >> 交叉科学部 >> 资助成果

交叉科学部

    我国学者在低缺陷核酸自组装研究方面取得进展

    日期 2022-05-20   来源:交叉科学部   作者:程智刚 戴亚飞  【 】   【打印】   【关闭

    图  亚10纳米周期核酸结构的缺陷抑制:正交核酸序列设计可以选择性抑制缺陷生成的动态过程,从而将高维晶格缺陷的生成几率降低两个数量级

      在国家自然科学基金项目(批准号:T2125001、21991134、21875003、21974113、21735004)等资助下,北京大学孙伟研究员团队与厦门大学朱志教授课题组合作,在亚10纳米周期核酸结构中,探索了晶格缺陷的有效抑制方法。相关成果以“小间距核酸阵列中的高维缺陷抑制(Suppressing high-dimensional crystallographic defects for ultra-scaled DNA arrays)”为题发表在《自然Ÿ通讯》(Nature Communications)。论文链接:https://www.nature.com/articles/s41467-022-30441-1。

      高分辨纳米加工方法的快速发展不断推动了纳米器件的小型化进程。但光刻纳米加工方法受限于光学衍射极限,分辨率的进一步提升面临着很多困难。以核酸自组装为代表的精准自组装技术,具有单分子尺度分辨率与复杂三维定制形貌,为纳米器件尺寸进一步缩减至光学衍射极限以下提供了可能。目前,核酸自组装结构已初步应用于制备具有10—20纳米特征周期的碳基、硅基器件,器件关键尺寸优于目前的极紫外光刻分辨率极限。然而,当核酸自组装结构的特征周期进一步缩减至亚10纳米时,邻近晶格往往在熵致作用下发生融合,大幅度增加位错等晶格缺陷的生成几率,破坏了核酸自组装结构的有序性,也制约了其在高分辨纳米加工中的应用潜力。

      孙伟研究员及其合作者以周期性核酸阵列作为模型体系,通过对结构缺陷的形貌及组装动态过程进行分析,研究了高维晶格缺陷的关键调控因素。研究发现,高维晶格缺陷的形成,与自由摆动的核酸单链嵌入相邻晶格的动态过程密切相关。随着核酸序列周期的减小,核酸单链嵌入相邻晶格的用时变短,缺陷生成的动态过程快于邻近晶格的正确组装过程,处于主导地位。序列周期越小,晶格缺陷越容易生成,核酸序列周期与缺陷生成几率负相关。为了抑制小间距阵列的高维晶格缺陷,需要在相邻形貌单元中引入正交核酸序列,在不改变阵列形貌的基础上,增大核酸序列的周期,选择性抑制缺陷生成的动态过程。基于这一正交序列策略所设计的7.5纳米周期核酸阵列,其缺陷率可以比传统设计策略降低两个数量级以上(低于1%),并且阵列周期远优于下一代极紫外光刻的特征尺寸。低缺陷的核酸阵列可以进一步作为模板,介导加工高密度三维金属线阵列(如钯、镍,图)。

      在生物分子介导的高分辨纳米加工领域,这一研究将为进一步制造亚10纳米周期的功能材料阵列奠定基础。同时,在亚10纳米周期内,量子传输特性开始占据主导,因此该研究也具有应用于未来全固态量子器件的潜力。