首页 >>目录 >>三、发展重点与主要任务
 
   根据国家中长期科学和技术发展规划纲要的总体部署,把握基础研究的发展趋势,结合科学基金资助工作的特点,按照以下原则遴选优先发展领域:一是充分利用我国现有良好基础和发展优势或充分体现我国资源与地域等特色,以科学问题为导向,瞄准科学前沿,鼓励学科交叉,推动我国基础科学优势研究领域向前发展;二是针对若干制约我国经济与社会可持续发展的重大难题中的关键科学问题,以及可能成为我国未来技术发展瓶颈的重要基础科学问题,提升我国自主创新能力,力争对社会和经济发展产生长远影响,引领科技未来发展。

  "十一五"期间的优先发展领域分为两个部分,一是按七个科学部分布的优先发展领域,具体领域详见附件;二是为了促进学科交叉,遴选出以下13个综合交叉的优先发展领域,加快综合性研究领域的发展,以多种方式促进这些领域整体能力的提升和关键问题的突破。

  1. 量子调控

  随着固态器件向小尺度、低维方向发展,器件本身已成为量子结构,作为信息载体的电子,在受限体系中呈现出许多与其在现有器件中完全不同的量子现象和量子效应。探索其中的物理机制和规律,运用各种量子工程手段进行有效的量子调控,将极大地促进新器件的发展,培育出全新的信息技术。

  主要科学问题:量子受限结构中量子相干现象,基于电子与光子过程的量子调控,基于自旋的量子输运和调控,基于宏观量子效应和超越经典电子效应的电子量子特性作为信息载体的探索,光子、声子带隙材料结构与特性及其在信息技术中的应用,分子电子学物理原理及其在信息技术中的潜在应用。

  2. 科学与工程计算

  科学计算是伴随着计算机的出现而迅速发展并得到广泛应用的交叉学科,已与理论和实验研究一起成为当今世界科学研究的主要手段。科学研究、高新技术和重大工程中的科学计算问题越来越需要由可信的计算机网络来完成。

  主要科学问题:工业问题中的建模分析与优化,金融风险分析与预测,地球系统模拟,大气、海洋、地下水和石油等复杂流体计算,材料物理中的多尺度计算,复杂生命系统的计算、模拟与控制技术,高性能计算方法和技术,并行计算、网络计算中的关键技术,计算机辅助技术,大规模科学计算软件平台,可信计算系统的体系结构与关键技术,网络系统的安全机制,可信计算系统开发与管理等。

  3. 生命重要活动的定量与整合研究

  随着在完整基因组、功能基因组、生物大分子相互作用及基因调控网络等方面大量数据的积累和基本研究规律的深入,生命科学正处在用统一的理论框架和先进的实验方法来探讨数据间的复杂关系,向定量生命科学发展的重要阶段。采用物理、数学、化学、力学、生物等学科的方法从多层次、多水平、多途径开展交叉综合研究,在分子水平上揭示生物信息及其传递的机理与过程,描述和解释生命活动规律,已成生命科学中的前沿科学问题。

  主要科学问题:非编码RNA的功能、蛋白质结构功能模拟与预测,生物大分子相互作用网络动力学及系统生物学,脂类分子与结构蛋白分子自组装体系,分子马达生物医学功能的物理、化学和力学性质,系统整合生物学理论与方法,从动态和整体的角度研究细胞信号通路间的相互作用(Crosstalk)、信号转导的反馈调控和信号转导网络,定量与整合研究复杂疾病的发生过程,生命信息系统建模与模拟,建立定量研究生命活动的新理论、新技术和新方法。

  4. 纳米科学与技术基础研究

  纳米科技将极大拓展和深化人们对客观世界的认识,使人们在原子、分子水平上制造材料与器件成为可能。随着纳电子学和纳米器件的发展,硅基电子材料加工和储存信息的极限将可能突破。纳米生物学的发展,将为人类在原子、分子水平上理解生命体系的复杂过程提供新的手段,从而可能极大地促进信息技术、生物技术和健康领域的发展。

  主要科学问题:纳电子器件的量子效应和单电子行为特性,纳米结构的量子效应、尺度效应和边界效应,纳米结构的测试和表征,硅基微电子器件的新原理、新技术及新结构,纳米传感、检测、存储与显示器件,相关纳米材料与纳米颗粒的生物学效应,基于探针技术的单分子与单细胞的识别和操纵控制原理,纳米结构的组装、仿生制造及生物功能,基于纳米材料的新型靶向药物控释技术,生物与医用纳米材料的设计与可控合成、修饰及宏量制备技术,基于微系统与纳米技术的医疗诊断技术与方法等。

  5. 认知过程及信息处理

  认知科学及信息处理主要研究知觉、注意、记忆、行为、语言、推理、思考、意识乃至情感动机等各个层面的认知机制及相关信息处理技术。开展认知及信息处理研究,对于推动人对智力本质的认识,促进信息科学、计算机科学、智能科学以及脑科学等的发展,提高人类健康水平等均具有重要意义。

  主要科学问题:知觉和注意及其信息处理,学习与记忆及其信息处理,语言与思维模型及其信息处理,脑成像及其信息获取与分析,人机结合的智能系统,基于环境的认知与认知过程复杂性。

  6. 新材料物理特性、制备技术与器件基础

  信息功能材料、生物材料、智能材料、能源材料、环境友好材料以及高性能结构材料等新型材料不但促进和丰富了材料科学领域自身的发展,而且还带动了一批高新技术产业的兴起,在我国未来社会进步和经济发展过程中将发挥越来越重要的作用。开展新材料微观结构及物理特性研究,发展新材料制备方法和研究材料制备中的关键科学问题,探索高性能器件设计的新概念、新理论和相关基本科学问题,对于推动材料科学的发展,拓宽新型功能材料和高性能结构材料的应用,提高我国科技竞争力具有重要的意义。

  主要科学问题:材料微结构与材料物性的内在关联与规律,材料的尺度效应、多尺度耦合机制和复合效应,材料的计算设计与物性预测的新理论与新方法,非常规超导机制和新型高温超导材料探索,新型功能材料与器件的结构设计、制备与组装,宽带隙半导体材料与器件的性能和机理,THz材料与器件设计的物理机理与技术,极端条件下材料物性以及特需新型功能材料的性质及其应用。

  7. 全球变化与地球系统

  伴随着"臭氧洞"、全球变暖和大范围、持续性旱涝灾害的频繁发生,人类社会面临巨大的环境压力和挑战,以全球环境问题为对象的全球变化研究成为当代重要的科学前沿之一。我国位于地球环境变化速率最大的季风区,其环境具有空间上的复杂性、时间上的易变性,对外界变化的响应和承受力具有敏感和脆弱的特点,并且当前处于经济高速发展、人口压力剧增的时期,资源短缺、灾害频繁发生,严重地影响着我国经济与社会的可持续发展。开展全球变化研究对于我国实施可持续发展战略具有重要理论意义和现实意义。

  主要科学问题:季风亚洲环境系统变化与适应,东亚地区生态系统的碳氮格局与关键过程,西太平洋、东印度洋与青藏高原"三角区"的陆海气相互作用,过去全球变化研究,东亚环境变化对全球变化的影响与响应,地球系统整体变化规律与预测,受损生态系统修复材料、功能、最佳生态条件与影响因素及其修复机制。

  8. 环境与生物相互作用

  地球环境创造了生命,生命演化造就了现在状态的地球,生命过程促进和灵敏地示踪了地球环境变化。重大地史转折期是生物与环境关系显现最为明确的时期。通过开展地球历史环境演变与生命过程和极端环境与生物适应的研究,不仅有助于深入了解生物的起源、演化与环境制约、地球环境事件和现代地表环境与生物多样性、极端环境中的生命特征与适应机制等重大理论问题,而且有利于了解过去、认识现在、预测未来,为实现人与自然协调发展和保护生物多样性提供科学依据。

  主要科学问题:地球早期生命和环境的协同演化,重大全球变化期环境效应与重要类群的起源和演化,"生命之树"关键支系的构建与环境制约,生物地球化学过程与地球表面环境演化,极端环境下生物进化过程中的基因变异规律和不同生物基因表达调控机制。

  9. 化学与生物医学界面上的重要科学问题

  以研究活性小分子与生物大分子或细胞的相互作用为核心,发现和鉴定疾病形成过程中的新基因和蛋白质新靶点,发展选择性作用于细胞、基因或蛋白质靶点的小分子化合物,对于促进医学基因组的研究,开发创新药物,发现疾病诊断和治疗的新方法具有重要意义。

  主要科学问题:生物活性小分子诱导的生物大分子的构象、结构和功能的变化及与细胞相互作用引起的功能变化与表征,作用于特异性基因和蛋白质的探针分子和调控分子的设计与筛选,生物活性小分子与生物大分子相互作用过程研究的新理论与新方法,基于功能基因的创新药物研究新策略,基因组研究中生物大分子相互作用信息获取、转换与检测的新原理、新方法和新技术,基于小分子调控的细胞繁殖、分化机制,疾病诊断中的生物标志物的分析检测新原理及新方法等。

  10. 化石能源高效洁净利用和新能源探索

  面对我国能源需求快速增长、环境污染不断恶化、化石资源日趋耗竭的严峻挑战,开展化石能源高效洁净利用研究,探索和开发新能源,实现我国未来能源系统从化石能源的高效洁净利用到以太阳能、生物质能、核能、氢能等为代表的多元化能源体系构建的战略转变,已成为我国可持续发展中迫切需要解决的关键问题。

  主要科学问题:化石燃料在高效转换利用中与其他物质间的相互作用机理和表征,化石燃料转化传递对生态环境的作用过程、机理及相关控制技术,受控核聚变的惯性约束和磁约束的稳定性、位型优化,新型太阳能高效转化机理与体系及相关材料的设计与制备,氢能大规模利用机制及新型高容量储氢材料,高性能燃料电池和氢气发动机开发中的基础科学问题,生物质高效转化利用过程的反应本质,能源转化的集成化过程与工程问题。

  11. 农业生物重要性状的功能基因组

  随着一些模式农业生物功能基因组研究的快速发展,利用已获得的模式农业生物的基因功能信息和比较基因组研究手段,会大大加快其它农业生物功能基因组的研究。在未来的5至10年间,人们对包括功能基因的变异、表达调控网络、不同基因间的相互作用等在内的机制的认识会有重要突破,为人类有效改良主要农作物和畜禽的经济性状提供重要的科学依据。

  主要科学问题:重要农业生物突变群体的构建与分析,影响主要农业生物重要性状的基因定位、连锁标记图谱及分子标记辅助育种研究,具有重要生物学功能的基因分离、克隆、功能鉴定和表达调控研究以及基因工程育种研究,农业生物的重要基因功能诠释及其与环境的互作,重要农业生物产量、品质等重要经济性状形成以及抗逆的分子机制和基因网络调控,重要农业生物杂种优势的功能基因组研究等。

  12. 社会系统与重大工程系统的危机/灾害控制

  由于人类在工程技术、经济管理等谋求自身福祉的活动中所出现的偏差,如重大工程灾变、恶性生产事故、技术滥用、经济调控失误、财富分配失衡等而导致的危机和灾害,已经成为一类影响我国社会经济全面协调可持续发展的潜在性破坏因素。探索这些因素的危机或灾害形成规律和控制机制,进而建立由上述因素以及自然因素(如灾害性地质/气象活动、生物灾变、病菌大规模流行等)所引起的危机与灾害的应急信息、决策和工程技术体系,对于科学地解决我国社会高速发展过程中的矛盾,促进和谐社会的建设具有极其重要的意义。

  主要科学问题:重大工程的灾害形成机理及其建模与仿真,重要经济系统与生产过程的危机/灾害机理建模和预警技术,危机/灾害预警与处置中的信息集成与知识挖掘,危机/灾害综合应急系统设计、仿真和实现技术,人类对危机/灾害的认知行为特征和应急决策理论,危机/灾害影响的后评估和系统重建理论。

  13. 现代制造理论与技术基础

  制造业是国民经济的物质基础、国家安全的重要保障和国家竞争力的主要体现。现代制造技术已成为一门多学科交叉的前沿科学领域,主要涉及材料、力学、信息、管理、能源和纳米科学等研究领域。近年来,数字智能化、高效清洁化、柔性集成化和微型精密化已成为现代制造技术的主流发展趋势。开展现代制造理论与技术基础研究,提升我国重大机械装备的自主创新设计和制造能力,推动我国制造业向节能、降耗、环保、高效的方向转变,为国民经济和社会可持续发展提供持久的动力。

  主要科学问题:复杂机电装备多物理过程交互规律与功能形成原理,加工制造过程多物理因素影响机理及其数字化描述,成形制造过程中材料组织演变规律和基于多尺度仿真的成形件性能预测,分布式制造系统信息作用规律与决策机制,极端时空条件下微纳制造参量对微纳器件宏观性能的影响规律,微纳尺寸零部件及特殊环境下的测量新原理和新方法,仿生机械学与生物制造,支持产品创新的数字化设计和制造理论基础等。

 

上一页 下一页

 
版权所有:国家自然科学基金委员会 京ICP备05002826号
Copyright 2005 NSFC, All Right Reserved