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Abstract

In order to improve the performance of block adaptive quantization (BAQ) when the output of the analog to digital converter (ADC)
is saturated, this paper proposes an anti-saturation BAQ algorithm. First, the concept of the standard deviation of the output signal
(SDOS) of the ADC is proposed. Also, unlike traditional normalization processing, SDOS is used and the mapping between SDOS
and the average signal magnitude is deduced. Second, the saturation term is introduced to the Lloyd–Max quantizer and an optimal
non-uniform scalar quantizer for saturated SAR raw data quantization is proposed. After this, the implementation scheme for the pro-
posed algorithm using an FPGA is analyzed in detail. Third, the relationships among the saturation degree of the signal, the peak-to-
peak value of the ADC, standard deviation of the input and output signal of the ADC and the average signal magnitude are deduced.
Based on these relationships, a power compensation decoder is designed for encoding. Numerical experiment results based on ERS-1 and
the simulated data show that the performance of the proposed algorithm is better than that of BAQ.
� 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in
China Press. All rights reserved.
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1. Introduction

The volume of space-borne SAR raw data is large, but
both the capability for onboard data storage and the down-
link bandwidth are limited. Meanwhile, with the develop-
ment of modern SAR systems towards high resolution,
multi-polarization, three-dimensional mapping, wide
swath, multi-frequency, and multi-operation modes, the
volume of SAR raw data will be even larger. Therefore,
the raw data must be compressed before downlink. Com-
pression algorithms can be divided into three categories:
(i) scalar compression algorithms; (ii) vector compression
algorithms; and (iii) transform domain compression algo-
rithms. The scalar compression algorithms include block
adaptive quantization (BAQ) [1], amplitude and phase

(AP) [2], block floating point quantization (BFPQ) [3],
fuzzy BAQ (FBAQ) [4,5], entropy-constrained BAQ
(ECBAQ) [4,5], and flexible BAQ (FBAQ) [6]. The vector
compression algorithms include vector quantization (VQ)
[4,5], block adaptive vector quantization (BAVQ) [4,5],
and trellis coded vector quantization (TCVQ) [4]. The
transform domain compression algorithms include fast
Fourier transform BAQ (FFT-BAQ) [4,5,7–9] and wavelet
transform (WT) [4]. Although the performance of the vec-
tor compression algorithm is better than that of the scalar
compression algorithm [10–12], the complexity makes it
difficult to realize onboard. FFT-BAQ needs two-dimen-
sional FFT operation and Doppler centroid estimation,
so it is also very difficult to realize onboard. WT is very
promising, but is also complex in realization. However,
BAQ has been successfully utilized in Magellan [1], ENVI-
SAT ASAR, TerraSAR-X and RADARSAT-2 due to its
simple structure.
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One problem must be solved in the application of BAQ,
i.e. the large dynamic range of the SAR echo, which usually
causes the analog-to-digital converter (ADC) to saturate
[13–15]. In this scenario, the ADC output is a truncated
Gaussian random signal, which does not satisfy the prere-
quisite of the Lloyd–Max quantizer [16,17] and the BAQ
performance deteriorates. Ref. [18] used conventional
BAQ and low compression ratio (CR) BAQ to compress
low SD signals and high SD signals, respectively. This
approach suffers in that the data forming system onboard
is more complicated, and the judgment operation has
additional cost for the low SD signal. Meanwhile, low
CR BAQ increases the bandwidth of the downlink data,
and the uncertainty of SD leads to uncertainty of the band-
width of the downlink data. These drawbacks make this
approach unfeasible in practice.

The key points of the saturation problem are as follows.
First, the truncation effect of the ADC invalidates the map-
ping between the average signal magnitude (ASM) and the
standard deviation of the input signal (SDIS) to the ADC.
Second, the output signal of the ADC with truncation
effect does not obey a Gaussian distribution. Thus the pre-
requisite of the Lloyd–Max quantizer is not satisfied, which
causes the BAQ performance to deteriorate. This paper
proposes a new mapping between ASM and the standard
deviation of the output signal (SDOS) from the ADC
and the optimal non-uniform scalar quantizer (ONSQ) in
order to solve these two issues.

2. Mapping between ASM and SDOS from ADC

The SAR echo can be viewed as a superposition of the
responses of many small scatterers in each azimuth and
range resolution cell. Based on the central limit theorem,
both the in-phase and quadrature components satisfy a
Gaussian distribution. The amplitude has a Rayleigh distri-
bution and the phase is normally distributed at the interval
[�p,p]. The prerequisite of the Lloyd–Max quantizer is
that the input signal of the quantizer must satisfy a stan-
dard Gaussian distribution, so SAR raw data must be nor-
malized before quantization. For simple implementation in
engineering, the mapping between the ASM and the SDIS
is utilized to estimate the SDIS. Ref. [1] gives the mapping
between ASM and SDIS as Eq. (1)
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mapping.
Eq. (1) assumes that an 8-bit ADC is used to quantize the
SAR raw data. However, when the ADC is heavily satu-
rated, the output power of the ADC suffers losses. Thus
using SDIS to ADC cannot effectively normalize the satu-
rated SAR raw data. Here, we formulate the mapping be-
tween ASM and SDOS from the ADC and use it to
normalize the saturated SAR raw data. The procedure of
the deduction is available in Appendix A.

The SDOS from ADC can be obtained from Eq. (2) as
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From Eqs. (2) and (1), we can obtain the implicit function
between the ASM and the SDOS of the ADC. Fig. 1 shows
the mapping between the ASM and SDOS of the ADC
compared with the mapping between the ASM and SDIS
to ADC. From Fig. 1, we can see that the linear parts of
these two curves are nearly overlapped and the signs of
the first-order derivatives of the nonlinear parts of these
two curves are opposite.

3. Anti-saturation optimal non-uniform scalar quantizer

3.1. Principle of the Lloyd–Max quantizer

The Lloyd–Max quantizer is the optimal non-uniform
scalar quantizer for standard Gaussian distributed signal
quantization. It was proposed by Max [16] and Lloyd
[17] independently and has been improved by other
researchers [19–25].

Ref. [16] defined the distortion D between the input sig-
nal and the output signal as

D ¼ E ðsinsoutÞ2
h i

¼
XN

i¼1

Z xiþ1

xi

ðx� yiÞ
2f ðxÞdx ð3Þ

where sin and sout are the input signal and the output signal,
respectively. f(x) is the amplitude probability density func-
tion of the input signal. xN+1 =1, x1 = �1, and the con-
vention is that an input between xi and xi+1 has a
corresponding output yi.

Then, if the differential coefficient of D with respect to
the xi’s and yi’s equals zero, we derive the minimum of D as

@D
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Fig. 1. Comparison of the mapping between ASM and SDIS with that
between ASM and SDOS.

1004 H. Qi, W. Yu / Progress in Natural Science 19 (2009) 1003–1009



The iterative conditions can be deduced from Eqs. (4) and
(5) as

xj ¼
yjþyj�1

2
; j ¼ 2; . . . ;N

R xjþ1

xj
ðx� yjÞf ðxÞdx ¼ 0; j ¼ 1; . . . ;N

)

ð6Þ

If yj satisfies the second formula of Eq. (6), we call it the
centroid of the area of f(x) between xj and xj+1. When yN

is the centroid of the last interval of x, Eq. (6) is solved [16].
When the ADC is saturated, the output signal of the ADC

with truncation effect does not obey a Gaussian distribution.
The iterative conditions must be modified accordingly.

3.2. Principle of the optimal non-uniform scalar quantizer

Obviously, the probability density function of the unsat-
urated part does not change before or after the ADC. So
the numerical approach is the same as that discussed in
Section 3.1, except that the centroid condition should be
modified. The centroid condition in the last interval can be
described as
Z 1

xL

ðx� yLÞf ðxÞdx ¼ 0 ð7Þ

where xL and yL are the transition point and the recon-
struction point in the last interval. Eq. (7) can be further
rewritten as
Z M
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M
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Taking the saturation into account, Eq. (8) can be deduced as
Z M

xL

ðx� yLÞf ðxÞdxþ ðM � yLÞ
Z Mþ

M�
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where P(x) is the probability density function of the satu-
rated signal on the truncated point.

The integral interval [M�,M+] is the nearest neighbor-
hood of M. The first part and the second part of Eq. (9)
represent the unsaturated and the saturated sections in
the last interval, respectively.

Since the probability of the interval beyond the trun-
cated point in Eq. (8) equals that on the truncated point
in Eq. (9), we can rewrite Eq. (9) as
Z M

xL

ðx� yLÞf ðxÞdxþ ðM � yLÞ
Z 1

M
f ðxÞdx ¼ 0 ð10Þ

Eq. (10) is solvable compared with Eq. (9), and the latter is
just a mathematical representation. The flow chart of anti-
saturation ONSQ is shown in Fig. 2.

4. Encoding and decoding scheme

4.1. Introduction

Fig. 3 shows the encoding and decoding scheme of BAQ
and of the proposed algorithm. The solid lines indicate the
same processes and the dashed lines show the different
processes.

From Fig. 2, we can see that the proposed algorithm
utilizes the SDOS rather than the SDIS to normalize the
sampled raw data. In the quantization procedure, the pro-
posed algorithm uses anti-saturation ONSQ instead of the
Lloyd–Max quantizer to quantize the saturated SAR raw
data. As for the decoding procedure, this paper proposes
the power loss compensation decoder (PLCD) to compen-
sate for the power loss due to ADC saturation.

4.2. Encoding scheme

Considering the implementation complexity, the encoding
scheme proposed here is very simple. We only need to update
the look-up-table (LUT) saved in the field programmable

Fig. 2. The flow chart of anti-saturation ONSQ.

Fig. 3. Encoding and decoding scheme of BAQ and the proposed
algorithm. (a) Encoding and decoding scheme of BAQ; (b) encoding and
decoding scheme of the proposed algorithm.
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gate array (FPGA) chip and do not need to update the Veri-
log HDL script or any hardware configuration.

Fig. 4 outlines the design flow of the LUT.
From Fig. 4, we can draw the conclusion that the design

flow of the LUT mainly contains three steps, which are
mapping between the ASM and the standard deviation,
normalization and quantization, and encoding. The ASM
is calculated by an accumulator array. Then, taking the
normalization and quantization as the transition, there is
a mapping between the ASM and the encoding results. This
mapping is the core procedure of the LUT. As for the
quantization process, the Lloyd–Max quantizer and the
anti-saturation ONSQ are the optimal quantizers for low
and high SD SAR raw data, respectively. So, we can save
the encoding results of the BAQ and anti-saturation
ONAQ in the low and high addresses of the LUT accord-
ingly. Then the LUT can output optimal quantization
results adaptively according to the variance of the ASM.
More details can be found in Ref. [26].

4.3. Decoding scheme

The definition of the saturation degree is

SD ¼ NUM satu

NUM total

� 100% ð11Þ

where NUMsatu is the number of saturated samples, and
NUMtotal is the total number of samples.

We can extend this definition to successive random vari-
ables, and then we can obtain

SD ¼ 2

Z 1

M
f ðxÞdx ð12Þ

where f(x) is the probability density function of the SAR
raw data.

Obviously, when the SAR raw data obey a Gaussian dis-
tribution, we can obtain the relationships between the satu-
ration degree, the peak-to-peak value of the ADC and the
SDIS from Eq. (12). These relationships are shown in Fig. 5.

From Fig. 5, we can see that when choosing certain
peak-to-peak values of the ADC, the saturation degree
monotonously nonlinearly increases as the SDIS goes up.
However, when SDIS is fixed, the relationship between
the saturation degree and the peak-to-peak value of the
ADC is inverted.

Also, from Eqs. (1), (2), and (12), we obtain the relation-
ships between the saturation degree, the peak-to-peak
value of the ADC, the SDIS, the ASM and the SDOS as
shown in Fig. 6.

As can be seen in Fig. 6, the solid lines and the dashed
lines depict the explicit and implicit functions, respectively.
The saturation of the ADC will cause power losses for the

input signal [13–15], so when we decode, compensation
should be considered for this power loss. The decoding
procedure is as follows. First, we decode according to the
anti-saturation ONSQ and the LUT, and then use the
SDIS to compensate for the power loss of the input signal.

5. Numerical experiment

5.1. Simulation of the whole set of saturation of raw data

domain

The peak-to-peak value of the ADC is 2 V in this simula-
tion. The CR is 8/3. The simulation result is shown in Fig. 7.

As shown in Fig. 7, on the left side of the dividing line of
the high and low addresses, the SNR is almost the same;
this is because the low address of the LUT stores BAQ

Fig. 4. The design flow of the LUT.

Fig. 5. The relationships between saturation degree, peak-to-peak value
of ADC and SDIS.

Fig. 6. The relationships between five parameters.
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codes. However, beyond the dividing line of the high and
low addresses, the performance of the proposed algorithm
is much better than that of BAQ. The reason is that ONSQ
rather than the Lloyd–Max quantizer is the optimal scalar
quantizer for the saturated Gaussian signal.

5.2. The results of the real SAR raw data

The following results are based on ERS-1 data from the
European Space Agency (ESA), and the parameters are
listed in Table 1.

Fig. 8 shows the images of two typical areas chosen in
this study. The size of these two images is 4096 � 768

(range � azimuth). The white floccule seen in Fig. 8 is snow
in Greenland. Here we set the range direction of the image
into eight sub-blocks equally, i.e. the size of each sub-block
is 512 � 768. The SD of each sub-block and raw data
domain SNR is depicted in Fig. 9.

Fig. 9(a) shows the saturation degree of each sub-block.
The saturation degree of the eighth sub-block is on the left
side of the dividing line of the high and low addresses of the
LUT. So, the Lloyd–Max quantizer is the optimal one for
this sub-block. Fig. 9(b) and (c) shows the performances of
BAQ and the proposed algorithm based on image 1. The
difference between Fig. 9(b) and (c) is that the 8th sub-
block is quantized by the Lloyd–Max quantizer. If we do
not use the left side of the dividing line of the high and
low addresses of the LUT, then the performance will dete-
riorate as shown in Fig. 9(b). From Fig. 9(c) and (d) we can
conclude that the performance of the proposed algorithm is
much better than that of BAQ over the whole set of SD.

Here it is worth noting that the ranges of SNR shown in
Figs. 7 and 9 are not exactly the same, because Fig. 7 is the
result of simulation data while Fig. 9 is that of the real
data, respectively. When we calculate the SNR, the ideal
signal in Fig. 7 is the input signal to the ADC, but the sig-
nal in Fig. 9 is the output signal from the ADC. The latter
is quantized and saturated. This difference causes the differ-
ent SNR ranges. So, there is no means to compare SNRs of
different real data sets according to the compression algo-
rithm. As for real data, we should compare SNRs of differ-
ent compression algorithms according to a certain real data
set.

6. Conclusions

This paper proposes an anti-saturation block adaptive
quantization algorithm for saturated SAR raw data com-
pression. Numerical experiments based on simulation and
real SAR raw data show that the performance of the pro-
posed algorithm is much better than that of BAQ over the

Fig. 7. Raw data domain SNR of BAQ and that of the proposed
algorithm.

Table 1
Parameters of ERS-1 data used in this paper.

Scene Orbit Frame Observation
time

Look angle at
center swatch (�)

Greenland ERS1: 23846 2259 1996.2.05 23.817

Fig. 8. Two typical areas and the sub-blocks partition. (a) Image 1; (b) image 2.
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whole set of saturation degrees. The implementation of the
proposed algorithm is very simple and can be easily utilized
in application.
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Appendix A. The relationship between ASM and SDOS

The assumption in Ref. [1] is

jI j ¼ jQj ¼ 2
XN�1

n¼0

ðxn þ 0:5Þ
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where r is the SDIS to ADC. p(x) is the probability density
function of Gaussian distribution.

P ðxÞ ¼ 1
ffiffiffiffiffiffi
2p
p

r
exp � x2

2r2

� �
ðA2Þ

Considering the saturation items in Eq. (A2),
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where the term 2½ðxN�1 þ 0:5Þ
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output signal when the input signal is at the interval
[xN,1] and [�1, �xN]. Then,
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Since the SAR raw data has a zero mean Gaussian distri-
bution, so Ex = 0. Then,
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Fig. 9. Experimental results of real SAR raw data. (a) SD curves of image 1 and image 2; (b) SNR of the proposed algorithm (does not store BAQ code in
the low address of LUT) compared with that of BAQ utilizing real data set 1; (c) SNR of the proposed algorithm compared with that of BAQ utilizing real
data set 1; (d) SNR of the proposed algorithm compared with that of BAQ utilizing real data set 2.
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