腾格里沙漠南部(河西走廊东段)沙尘暴 代用指标初探*

管清玉¹ 潘保田^{1**} 徐树建² 邬光剑³ 李 娜¹ 赵 明⁴ 徐先英⁴ 潘俊斌¹ 1. 兰州大学西部环境教育部重点实验室, 兰州 730000; 2. 临沂师范学院地理与旅游学院, 临沂 276005; 3. 中国科学院青藏高原研究所环境与过程实验室, 北京 100085; 4. 甘肃民勤荒漠草地生态系统国家野外科学观测研究站, 武威 733000

摘要 沙沟剖面蕴涵着上风向腾格里沙漠南部(河西走廊东段)沙尘暴形成与演化的丰富信息. 文 中通过对沙沟剖面3 个样品组粒径一标准偏差的分析,发现各样品组都存在4 个敏感粒组,由古 土壤层向黄土层、砂层各敏感粒组呈现出变粗的趋势. 在粒度分布模式上,沙沟剖面3 个样品组存 在分异,S1(平均)、L1(平均)均为双峰分布模式,L1(砂层)则为三峰分布模式,即多了一个较粗 的第三峰(275.4-550^µm),这与现代腾格里沙漠尘暴样的粒度分布模式相一致,而且古砂层第三 峰所处的粒径范围恰好与其4 个敏感粒度组分之一基本吻合.由于L1(砂层)是腾格里沙漠沙尘暴 过程的直接产物,因此可以将沙沟剖面275.4-550^µm 的粒组含量作为腾格里沙漠南部(河西走廊 东段)沙尘暴的敏感代用指标.

关键词 腾格里沙漠 沙尘暴 粒度 粒径一标准偏差

沙尘暴是我国西北沙漠及其附近边缘地区春季 最大的突发性灾害天气,特别是河西走廊东段,是 我国乃至整个亚洲地区沙尘暴发生最频繁的地区. 而作为中国第四大沙漠的腾格里沙漠,其沙尘暴的 发生频率在中国乃至整个亚洲地区都是较高的地区 之一,同时,其沙尘暴形成演化过程与机制以及与 全球变化和季风演变关系研究在中国第四纪研究中 占有十分重要的地位.因此,很有必要加强对腾格 里沙漠第四纪以来沙尘暴形成演化过程与机制的研 究.

目前,对于沙尘暴的研究,还主要集中在有仪器记录以来的五六十年范围内¹⁻¹³,这些研究无疑对沙尘暴的形成演化提供了极其重要的基础信息. 然而,要深入了解沙尘暴这种自然现象,揭示其演变规律,百年尺度内的研究时段还远远不能满足需要.沙漠所固有的沉积特征,导致从中提取长时间 尺度(千年一万年尺度)沙尘暴形成演化的信息比较 困难、由此也导致长序列沙尘暴形成演化的资料比 较匮乏,然而,由于中国黄土与沙漠是一耦合系 统[14-10],黄土物质源于沙漠,黄土地层中理应含有 沙尘暴形成演化的信息.因此,可以利用黄土地层, 特别是那些毗邻沙漠的黄土地层来反演沙尘暴的形 成与演化历史,同时,末次冰期旋回是距现代最近 的一个冰期旋回, 查明其中沙尘暴演变历史与规律 对于今后沙尘暴的防治具有极其重要的意义. 一个 关键问题是在这些沙漠边缘的黄土地层中应该选取 什么样的指标作为沙尘暴的代用指标。本文拟通过 对现代尘暴样品与沙漠边缘末次冰期旋回所沉积黄 土样品(包括末次冰期所沉积的黄土与末次间冰期 所发育的古土壤,即Loess1与Paleosol1,以下分 别简写为L1,S1)的粒度分析,并结合其地化元素 分析结果,对这一问题加以初步探讨.

** 通信作者, E-mail: panbt @lzu.edu.cn

?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

²⁰⁰⁸⁻⁰⁷⁻⁰⁸ 收稿, 2008-08-09 收修改稿

^{*} 国家自然科学基金(批准号: 40701016)和国家重点基础研究发展计划(批准号: 2005CB422001)资助项目

1 材料与方法

沙沟剖面位于腾格里沙漠南部、祁连山东段北 麓。是目前在河西走廊地区所发现最厚的风成黄土 沉积(厚约230m)^[17-19].选取其S1以上(包括S1) 39.4 m 厚的层位进行研究,其中 S1 厚 11.6 m,采 样间隔为 2.5 cm; L1 厚 27.8 m, 采样间隔为 5 cm (其中 L1 最上部深度 0-3.525 m 采样间隔为 2.5 cm), 总共采集散样 1084 个. 在 2007 年 4 月 27 日下午甘肃省民勤县发生了当年最强的一次强沙尘 暴(最小能见度 $< 100 \,\mathrm{m}$, 个别地区能见度 $< 50 \,\mathrm{m}$, 瞬间极大风速达 24.7 m/s). 在甘肃民勤荒漠草地生 态系统国家野外科学观测研究站(38°38′N, 103°05′E) 铁塔 1m 高的部位,我们对整个尘暴过程进行了样 品捕集. 应用 Malvern Instruments Ltd. 生产的 Mastersizer 2000 激光粒度仪 (测试范围为 0.02-2000^µm),对所有黄土样与尘暴样进行了测试,具 体方法详见文献[19].另外,以10cm间隔选取了 沙沟剖面 380 个样品与现代尘暴样品一起进行了地 化元素测试. 具体实验方法为: 将完全自然风干的 样品研磨, 过 200 目(75 µm) 筛, 称取 4g 左右倒入 压样孔中央,周围加入适量硼酸,加压至 30 t/m² 并维持 20 s, 得到直径约 4 cm、厚约 8 mm 的圆饼. 最后将圆饼放置于 Panalytical Magix PW2403 型 X 荧光仪测量(同一样品的测量标准差约为2%).所 有实验均在兰州大学西部环境教育部重点实验室内完 成.

在对古环境载体的解译研究中,沉积物的粒度 是一种应用较为广泛的指标^[20-30].由于沉积物大都 是多种物源或沉积动力过程的混合,所以其总体粒 度分布可视为影响其粒度组成的所有地质作用(包 括搬运、沉积及后生作用)对全样粒度综合作用的 结果^[31].从随机过程的角度来看,沉积物是多个随 机过程的产物,由此看来,粒度分布也是多个随机 过程产生的粉尘物质的累积^[31].然而,研究者通常 将全样的粒度参数作为沉积环境的代用指标,因此 这可能是一种近似的方法^[26,32].虽然目前从物理上 对不同成因的沉积物进行分离几乎是不现实的,但 是从数字特征上分离它们却是可行的^[26,28-30,32].实 际上,沉积序列中所包含的粒度组分并不都在单个 样品中表现为明显的峰态,这就致使从单个样品的

粒度分布曲线上难以确定沉积序列所包含的粒度组 分的个数及其范围,由干标准偏差是反映数据离散趋 势最常用的一个重要指标(标准偏差越大,则数据变 异程度越大:反之亦然),因此,可将其应用于沉积 序列各粒级的分析进而获得粒径-标准偏差图, 据此 可以发现在一系列样品中粒度变化存在明显差异的粒 度组分(与沉积动力环境变化密切相关)的个数和范 围,从而获得不同粒级的环境敏感粒度组分[30.33].在 海洋沉积中, 通过计算粒径-标准偏差变化获得粒度 组分的个数和分布范围,进而从沉积物序列总体中提 取出对沉积环境变化敏感的粒度组分并成功的将其应 用于古环境研究之中^[28-30].在风成沉积研究中粒径 一标准偏差分离方法应用相对较少,我们曾利用该方 法在黄土沉积中做过有益尝试^[33],发现粒径一标准 偏差分离方法在黄土沉积中同样具有较好的应用前 景. 本文利用该方法对沙沟剖面 S1, L1 地层进行分 析, 同时结合黄十样、尘暴样的粒度特点, 试图从沙 沟剖面中提取出敏感的粒度指标作为腾格里沙漠南部 (河西走廊东段)沙尘暴的代用指标.

2 结果与讨论

2.1 结果

沙沟剖面的粒径一标准偏差分析结果显示,在 S1 地层中包含 4 个敏感粒度组分,其粒径区间分别 为: 0.4-1.3,3.3-22.9,22.9-120.2,209-550 µm,以 22.9-120.2 µm 的粒度组分的标准偏 差最大,3.3-22.9 µm 的次之,209-550 µm 的最 小(图 1).与S1 类似,L1 地层中同样包含 4 个敏感

样品中表现为明显的峰态,这就致使从单个样品的. 图1.沙沟剖面各样品组的粒径一标准偏差.

粒度组分,以 39.8-158.5 µm 的粒度组分的标准 偏差最大,11.5-39.8µm 的次之,275.4-550µm 与 0.4-1.4µm 的较小且基本相当(图 1).在沙沟剖 面最上部存在一个 15 cm 厚的砂层,该砂层为整个 剖面中最粗的层位,我们单独将其作图进行分析 (图 1,图 2,总共分析了7个样品).粒径一标准偏 差分析结果显示该砂层也可区分出4个敏感粒度组 分,按照标准偏差由大到小的顺序依次为30.2-182,3.3-30.2,0.4-1.5与275.4-631µm(图 1).因此,不论是在S1地层还是在L1地层,都包 含4个敏感粒度组分,并且呈现出由古土壤层向黄 土层、砂层变粗的趋势.

粒径一体积含量图(图 2)显示沙沟剖面 S1 与 L1 地层中各样品的分布模式为双峰模式(主峰分布 于 5-105 µm 之间,次峰分布于 0.4-1.3 µm 之 间),而治沙站尘暴样与沙沟剖面 L1 顶部砂层样则 呈现出 3 峰模式(主峰分别介于 35-182, 10-120 µm之间,次峰分别介于 2-20, 0.4-1.3µm 之 间,第3 峰分别介于316.2-831.7,275.4-550µm 之间).总的看来,治沙站尘暴样与沙沟剖面 3 个样 品组的主峰、次峰基本上可以相互对应,只是由沙 沟剖面 S1(平均)、L1(平均)、L1(砂层)到治沙站 尘暴样,其峰态逐渐偏粗.所不同的是,治沙站尘 暴样与沙沟剖面 L1 砂层样存在粒径较粗的第 3 峰.

地化元素分析结果见表 1.

表1 各分析样品地化元素比值

样品名称	Ti∕Zr	Ti∕Nb	Zr⁄Hf	Nb/Zr	Rb/ Sr	Ti⁄ Al	Ca⁄ Al	Mg/Ca	Al∕ Na	K/Na
S1 各样品平均	11.067	194. 444	31.858	0.057	0.397	243.807	0. 690	0.361	4.666	0.851
L1 各样品平均	9.833	190. 947	31.798	0.051	0.376	245.789	0.722	0.334	4.386	0. 791
L1 顶部沙层样	9.366	192. 537	31.479	0.049	0.322	250. 558	0.810	0.330	4.444	0.802
治沙站尘暴样	9.994	192. 495	31.441	0.052	0.380	395.539	0.383	0.788	2.611	0.194

2.2 讨论

粒径< 100μ m 的沙粒,在大风中可能接近悬移 状态,然而只有粒径< 50μ m 的粉砂与粘土颗粒, 由于它们体积细小、质量轻微,一旦被风扬起,就 不易沉落,能够被风悬移很长距离,有的甚至可运 离源地千里之外^[34].在风沙运动中,以悬浮方式搬 运的沙量只占全部沙量的很少一部分 (< 5 %,甚至 < 1%),跃移(约占 75% 左右)与蠕移是风沙运动 的主要方式^{34,39}.50-500 μ m 的沙粒属于跃移的组 分,而 100-150 μm 为最易发生跃移的组分, 500-2000μm 为蠕移的组分^[34]. Pye 在理论计算与 实际观测的基础上,对普通风暴中各粒级组分的主 要搬运方式、搬运高度及一次性搬运距离进行了总 结^[36],认为:在一般尘暴事件中,70-500μm的砂 和粉砂级粗粒组分每次起动只能上升到近地表几厘 米到几米范围内并在水平方向上跃移同样量级的距 离;20-70μm 的粉砂组分主要以短距离悬移方式 搬运,其搬运高度主要在近地表几百米以内的对流

?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

层低部,一次性搬运距离大致在 1000 km 以内;几 个微米以下的细粒组分可上升到几千米以内任一高 度而作长距离悬移.

基于上述的一些研究成果^{[34-39},我们认为沙沟 剖面小于 2^{µm} 的各敏感粒度组分应属于长距离悬 移组分;3-40^{µm} 的各敏感粒度组分主要以悬移方 式从几千公里以外的源区搬运而来.因此,小于 40^{µm}的各敏感粒度组分中源于腾格里沙漠的物质 较少,不适合作为腾格里沙漠南部(河西走廊东段) 沙尘暴的代用指标.40-180^{µm} 的各敏感粒度组分 虽然主要以跃移搬运方式为主,但其中仍然包含数 量可观的悬移成分,无法排除非腾格里沙漠物源的 干扰,因此同样也不是腾格里沙漠南部(河西走廊 东段)沙尘暴的敏感代用指标.

搬运介质的动力大小是决定沉积物粒度组成的 一个基本因子. 在干旱区, 大风甚至可以将粒径为 厘米级的砾石吹起,例如北疆准噶尔盆地西部准噶 尔门的最大风速超过 $40 \text{ m} \circ \text{s}^{-1}$,能把艾比湖岸上 直径 2-3 cm 的砾石吹起堆成高 30 cm 的砾波^[35]. 腾格里沙漠是一个多大风的地区, 1961-1970年间 在民勤地区所记录到的最大风速为 $28 \text{ m} \circ \text{s}^{-1[33]}$, 1993 年 5 月 5 日特大沙尘暴发生时最大风速达到 38 m ° s⁻¹. 虽然几百微米级别的砂粒在普通尘暴事 件中水平搬运的距离最大仅为几米[36],但是,在特 大沙尘暴发生时,由于风力强劲,其搬运的距离可 能会更远. 谢远云等[37] 对哈尔滨市 2002 年 3 月 20 日发生的特大沙尘暴的研究发现。沙尘暴沉积物的 粒度呈三峰态分布,而且此次尘暴降尘中检出了 420.5-500^{µm} 粒级的组分. 在对兰州市现代尘暴 降尘样的分析研究中,我们不仅发现其粒度呈三峰 态分布, 而且也检出了 181.97-478.63 µm 的粒级 组分(另文发表),因此,三峰态分布可能是沙尘暴 沉积物的一个共性(当然,这还需要更多的尘暴资 料加以验证), 在沙尘暴天气过程中, 由于风力强 劲,确实可以将粒径在 200-500^µm 的粗颗粒吹起 并作一定距离的搬运.

在母岩风化、搬运、沉积及后期成壤过程中, 虽然某些元素由于风化和淋失作用,其绝对含量会 发生变化,但碎屑岩的地球化学成分仍然主要受物 源区控制^[38],并且一些元素(特别是相关性较好的 元素)的比值不发生明显改变^[39],可以将这些元素 的 比 值 (如 Ti/Zr, Ti/Nb, Zr/Hf, Nb/Zr, Rb/Sr, Ti/Al, Ca/Al, Mg/Ca, Al/Na, K/Na) 用于沉积物的物源研究之中^[40-43].样品地化元素比 值显示(表1),治沙站尘暴样中各微量元素比值尤 其是Ti/Nb 值、Zr/Hf 值与 L1 顶部沙层样较为接 近,但对于各常量元素的比值而言,其他三类样品 之间数值较为一致,而与治沙站尘暴样形成显著差 异.这一方面说明沙沟剖面中的确沉积有其上风向 腾格里沙漠所输送来的物质,另一方面也暗示腾格 里沙漠并非沙沟剖面唯一物源.

沙沟剖面中未见流水作用痕迹。该剖面位于一 个独立的山头之中,与南面基岩山地明显分割开来 (尤其是 S1 以上地层, 高耸干距沟底 200 多米的位 置之上),因此基岩山区坡面流水所携带的物质不 可能影响到沙沟剖面.对于沙沟剖面275.4-550^{µm} 的敏感粒度组分而言,其风成成因是毋庸置疑的, 搬运方式以跃移方式为主,其次为蠕移,虽然在一 般的尘暴事件中其水平搬运距离仅为几米,但在 强、特大沙尘暴发生时,该粒度组分的颗粒会被搬 运得更远, 由腾格里沙漠搬运到沙沟剖面之上是完 全可能的. 当然, 绝大多数粗颗粒的搬运过程可能 并不是一次完成的, 而是多次呈接力式进行的, 在 尘暴天气过程中,强劲的风力除了可以将沙漠地区 的物质(包括以往尘暴过程中所遗留在搬运路径上 的物质)带到沙沟剖面之上外, 剖面附近地区河漫 滩与洪积扇上的物质(包括粗颗粒物质)也可加入到 尘暴之中而被风搬运到剖面之上,而且后者由于距 剖面距离更短, 被搬运的可能性更大, 虽然有非腾 格里沙漠地区的物质特别是粗颗粒物质加入尘暴之 中而被搬运到剖面之上,但这并不影响对于尘暴历 史的解译,相反使原本比较微弱的信号得以放大从 而更趋明显.

古风成沙是沙漠尤其是沙尘暴活动的最直接标志,由于沙沟剖面毗邻腾格里沙漠且在其下风向,因此该剖面最上部 15 cm 厚的砂层是腾格里沙漠沙 尘暴过程的直接产物.粒径一体积含量图中(图 2) 古砂层与现代尘暴样都存在第三峰,然而该峰在 S1 (平均)、L1(平均)中是缺失的,同时古砂层第三峰 所处的粒径范围(275.4—550µm)恰好与其 4 个敏 感粒度组分之一基本相吻合(图 1).由于现代尘暴 样与沙沟剖面 L1,上部的古砂层都与腾格里沙漠的

尘暴过程关系密切,因此它们在粒度特征上极为相 似. L1 与 S1 地层中含有腾格里沙漠尘暴过程所带 来的物质这是毋庸置疑的,然而,除了尘暴过程给 沙沟剖面所在地区提供物质外,非尘暴过程也为其 (尤其是 S1 地层)输送了比较可观的粉尘物质, 虽然 L1 与 S1 地层中含有尘暴过程的物质,由于我们在 对粒度数据处理时取的是两地层中所分析样的平均 值,因此这就掩盖或者大大削弱了尘暴过程的相关 信息,这也成为粒径一体积含量图中(图 2)S1(平 均)、L1(平均)缺失第三峰的主要原因. 鉴于此, 我们认为,可以将沙沟剖面 275.4—550 µm 的粒组 含量作为腾格里沙漠南部(河西走廊东段)沙尘暴的 敏感代用指标.

结论 3

(1) 沙沟剖面 3 个样品 4 个敏 感 粒 4并且呈现出由古土壤层向黄土层、砂层变粗的趋 垫.

(2) 沙沟剖面 S1(平均)、L1(平均)的粒度呈双 峰分布,L1(砂层)与治沙站尘暴样的粒度则呈三峰 分布,它们的主峰与次峰基本上可以相互对应,只 是由沙沟剖面 S1(平均)、L1(平均)、L1(砂层)到 治沙站尘暴样, 其峰态逐渐偏粗.

(3) 沙沟剖面 275.4-550µm 的粒组含量可以 作为腾格里沙漠南部(河西走廊东段)沙尘暴的敏感 代用指标.

苏怀、王均平博士参加了野外工作,在 致谢 此表示感谢.

考 Ť 献 参

- 1 张德二, 王坚红, 张小曳. 1990 年北京 降尘事件 的天气动 力条 件及其化学元素特征. 第四纪研究, 1991, (3): 204-212
- 2 张德二,陆 风.我国北方的冬季沙尘暴.第四纪研究, 1999, (5), 441 - 447
- 3 庄国顺,郭敬华,袁 蕙,等. 2000 年我国沙尘暴的组成、来 源、粒径分布及其对全球环境的影响.科学通报,2001,46(3); 191-197
- 4 张小曳.亚洲粉尘的源区分布、释放、输送、沉降与黄土堆积. 第四纪研究, 2001, 21(1): 29-40

21(1): 9-17

- 6 周自江,章国材.中国北方的典型强沙尘暴事件(1954-2002 年). 科学通报, 2003, 48(11): 1224-1228
- 7 邱新法,曾 燕,缪启龙.我国沙尘暴的时空分布规律及其源地 和移动路径. 地理学报, 2001, 56(3); 316-322
- 8 周秀骥,徐祥德,颜 鹏. 2000 年春季沙尘暴动力学特征,中国 科学, D辑, 2002, 32(4): 327-334
- 9 钱正安, 宋敏红, 李万元. 近 50 年来中国北方沙尘暴的分布及 变化趋势分析. 中国沙漠, 2002, 22(2): 106-111
- 10 王式功,王金艳,周自江,等.中国沙尘天气的区域特征.地理 学报, 2003, 58(2): 193-200
- 11 方小敏, 韩永翔, 马金辉, 等. 青藏高原沙尘特征与高原黄土堆 积: 以 2003-03-04 拉萨沙尘天气过程为例. 科学通报, 2004, 49(11). 1084-1090
- 12 孙业乐, 庄国顺, 袁 蕙, 等. 2002 年北京特大沙尘暴的理化特 性及其组分来源分析. 科学通报, 2004, 49(4): 340-346
- 13 刘明哲,魏文寿. 南疆近 60 年来的气候变化及其对沙尘暴发生 条件的影响. 干旱区地理, 2005, 28(4): 479-483
- 14 刘东生,等. 黄土与环境. 北京: 科学出版社, 1985
- 15 董光荣, 高尚玉, 金 炯, 等. 毛乌素沙漠的形成、演变与成 因. 中国科学, B辑, 1988(6): 633-642
- 16 丁仲礼,孙继敏,刘东生.联系沙漠-黄土演变过程中耦合关系 的沉积学指标.中国科学,D辑,1999,29(1):82-87
- 17 潘保田, 邬光剑, 王义祥, 等. 祁连山东段沙沟河阶地的年代与 成因. 科学通报, 2000, 45(24): 2669-2675
- 18 Pan BT, Burbank D, Wang YX, et al. A 900 k y. record of strath terrace formation during glacial-interglacial transitions in northwest China. Geology, 2003, 31(11): 957-960
- 19 管清玉,潘保田,高红山,等.高分辨率黄土剖面记录的末次间 冰期东亚季风的不稳定性特征. 中国科学, D 辑, 2007, 37(1); 86-93
- 20 Porter SC, An ZS. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature, 1995, 375: 305-308
- 21 Derbyshire E, Kemp RA, Meng XM. Variations in loess and palaeosol properties as indicators of palaeoclimatic gradients across the Loess Plateau of Northern China. Quaternary Science Reviews, 1995, 14: 681-697
- 22 Rea DK, Hovan SA. Grain size distribution and depositional processes of the mineral component of abyssal sediment; Lessons from the North Pacific. Paleoceanography, 1995, 10(2): 251-258
- 23 Zielinski GA, Mershon GR. Paleoenvironmental implications of the insoluble microparticle record in the GISP2(Greenland) ice core during the rapidly changing climate of the Pleistocene- Holocene transition. Geological Society of American Bulletin, 1997, 109(5), 547 - 559

5 2周月江-2近45年中国扬沙和沙尘暴天气。第四纪研究。2001 24 China Academic Journal Electronic Publishing Steffensen JP. The size distribution of microparticles from select-House. All rights reserved. ed segments of the Greenland Ice Core Project ice core representing different climatic periods. Journal of Geophysical Research, 1997, 102: 26755-26763

- 25 Zdanowicz CM, Zielinski GA, Wake CP. Characteristics of modern atmospheric dust deposition in snow on the Penny Ice Cap, Baffin Island, Arctic Canada. Tellus, 1998, 50(B): 506-520
- 26 Sun DH, Bloemendal J, Rea DK, et al. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sedimentary Geology, 2002, 152; 263-277
- 27 孙东怀,安芷生,苏瑞侠,等. 最近 2 6Ma 中国北方风流与西风 环流演变的风尘沉积记录.中国科学,D 辑,2003,33(6): 497-504
- 28 孙有斌,高 抒,李 军.边缘海陆源物质中环境敏感粒度组分的初步分析.科学通报,2003,48(1):83-86
- 29 Boulay S. Colin C, Trentesaux A, et al. Mineralogy and sedimentology of pleistocene sediment in the South China Sea (ODP Site 1144). In: Prell W L, Wang P, et al. eds. Proceedings of the Ocean Drilling Program, Scientific Results, 2003, 184, 211: 1-21
- 30 向 荣,杨作升,Y. Saito 等.济州岛西南泥质区近 2300 a 来 环境敏感粒度组分记录的东亚冬季风变化.中国科学,D 辑, 2006, 36(7): 654-662
- 31 孙东怀.黄土粒度分布中的超细粒组分及其成因.第四纪研究, 2006, 26(6): 928-936
- 32 Prins M A, Postma G, Weltje GJ. Controls on the terrigenous sediment supply to the Anabian Sea during the late Quaternay: The Makran contineantal slope. Marine Geology, 2000, 169(3-

4): 351-371

- 33 徐树建,潘保田,高红山,等.末次间冰期一冰期旋回黄土环境
 敏感粒度组分的提取及意义.土壤学报,2006,43(2):183-189
- 34 吴 正. 风沙地貌学. 北京: 科学出版社, 1987
- 35 吴 正. 我国的沙漠. 北京: 商务印书馆, 1982
- 36 Pye K. Aeolian Dust and Dust Deposits. London: Academic Press, 1987
- 37 谢远云,何 葵,康春国.哈尔滨市特大沙尘暴沉降物的粒度分 布及意义.中国地质,2005,32(3):502-506
- 38 Rollinson H.R. Using Geochemical Data: Evaluation, Presentation, Interpretation. London: Longman Scientific Technical Press. 1993, 1-352
- 39 Taylor SR, McLennan SM. The Continental Crust: Its Composition and Evolution. An Examination of the Geochemical Record Presserved in Sedimentary Rocks. Oxford London: Black well Scientific Publication. 1985, 1-301
- 40 Sun JM. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth and Planetary Science Letters, 2002, 203: 845-859
- 41 陈 旸,陈 骏,刘连文.甘肃西峰晚第三纪红黏土的化学组成 与风化特征.地质力学学报,2001,7(2):167-175
- 42 杨守业,李从先. 长江与黄河沉积物元素组成及地质背景. 海洋 地质与第四纪地质, 1999, 19(2): 19-25
- 43 Byme RH, Kump LR, Cantrell KJ. The influence of temperature and pH on trace metal speciation in seawater. Marine Chemistry, 1988, 25: 163-181