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[摘 要] 滑坡是全球最严重的地质灾害之一，特别是在中国，频发的滑坡灾害造成了严重的人员伤亡 

和经济损失，准确预测预报滑坡灾害是防灾减灾的重要任务。本文综述了滑坡灾害预测预报的最新进展 

和挑战，重点讨论了空间预测、时间预报、基于演化的预测预报和数值预测预报模式四个方面。空间预测 

方法包括定性、半定量、统计学和机器学习方法（浅层和深层）。尽管取得了显著进展，但数据整合和多尺 

度分析仍是主要挑战。时间预报方面，总结了现象与经验、统计学、关联要素阈值及物理力学机制预报的 

应用现状，提出了融合滑坡演化机理与多场监测数据的需求。在基于演化的滑坡预测预报领域，探讨了 

滑坡演化模式、演化阶段和演化状态的划分及其对预测预报精度的重要性。滑坡数值预测预报模式的研 

究则重点介绍了三类滑坡启滑机制的统一判据、滑坡数值预测预报模式及其平台构建，强调其在实时动 

态更新与预测中的应用前景。最后，本文展望了未来滑坡灾害预测预报研究的挑战与主要方向。 
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我国是全球滑坡地质灾害最严重的国家之一。根 

据《全国地质灾害通报》和国家统计局年鉴数据，2000 
—2022年，全国共发生各类地质灾害超过40万起（不含 

地震诱发的次生地质灾害），其中滑坡灾害约30万起，占 

比约75%，表明滑坡是我国最主要的地质灾害类型 [1-3]。 

美国国家航空航天局（National Aeronautics and Space 
Administration，U. S.，NASA）于2017年发布的全球滑坡 

易发性地图显示，我国多个区域处于潜在滑坡灾害的高 

风险带。 

我国地处亚欧板块东南缘，东临太平洋板块，南接 

印度洋板块，地质构造背景复杂，地壳活动强烈。同时， 

极端气候事件频发，地震、暴雨、台风等外部扰动频繁， 

显著增强了滑坡灾害的孕育和诱发效应 [4]。近年来，随 

着“一带一路”“双碳目标”“长江经济带”“黄河流域生态 

保护和高质量发展”“CZ铁路”“YX水电”等国家重大战 

略和大型工程的推进与实施，人类工程活动在山区持续 

增强，进一步改变了地质环境稳定性，加剧了滑坡灾害 

的发生风险。从灾害时空分布特征看，我国滑坡灾害具 

有明显的季节性和区域性：时间上主要集中于汛期雨 

季，空间上集中分布于西南山地、西北黄土、华中丘陵及 

东南沿海台风多发区等，表现出“分布广、数量多、规模 

大、损失重、致灾机制复杂”等典型特征 [5]。 

滑坡灾害的发生是一个涉及多尺度、多物理场、多 

阶段演化的复杂地质力学过程，受控于地质结构、岩土 

体物质组成以及多种内外动力因素的耦合驱动 [6]。其 

演化过程具有显著的非线性、阶段性与模式多样性，叠 

加的多时空效应使得滑坡的精准预测预报面临严峻挑 

战。Science期刊在“我们尚未知晓的125个科学问题”中 
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提到：“我们是否能够更准确地预测灾害性事件？”—— 
滑坡灾害预测预报问题，是当前地质灾害防治领域的国 

际前沿与核心科学难题之一 [7]。其研究不仅是工程地 

质与地质灾害防灾减灾的基础任务，也是衡量国家地质 

灾害科技能力水平的重要标志。 

滑坡灾害预测预报主要分为空间预测和时间预测 

两大方向：空间预测依据研究尺度的不同，可细分为区 

域、地段与场地三级；时间预测则依据预警时间窗口的长 

短，划分为长期预测、中期预测与短临预报等类型 [8]。 

不同尺度和类型的预测手段在理论方法、数据支撑与技 

术实现方面均存在显著差异，亟需跨学科协同与技术融 

合创新。一般而言，预测侧重长期（数年至数十年）的空 

间分布与发生概率评估，故滑坡预测主要针对滑坡灾害 

的空间分布规律与易发性评估，旨在回答“哪里可能发生 

滑坡”以及“可能性有多大”等问题；而预报侧重短期（数 

天至数月）的临灾时间预警，回答“什么时候”可能发生滑 

坡的问题。开展滑坡灾害预测预报研究，不仅是落实国 

家防灾减灾救灾战略、建设“宜居地球”的内在要求，也是 

面向重大国际科学问题、推动地学理论与技术发展的重 

要方向，具有深远的科学意义与重大的应用价值。 

本文第1节“滑坡灾害空间预测”和第2节“滑坡灾害 

时间预报”主要对已有研究成果进行系统性梳理，旨在总 

结该领域的发展脉络、典型方法与现存挑战。第3节“基于 

演化的滑坡灾害预测预报”和第4节“滑坡灾害数值预测预 

报模式”则重点阐述本团队在该领域的相关研究进展。 

1 滑坡灾害空间预测 

滑坡的发生与演化遵循协同演化规律，地壳运动、 

气候变化和地表过程相互作用推动滑坡的形成与发展。 

滑坡的空间分布与地质构造、河流演变和气候变化密切 

相关，具有阶段性和时空规律性 [9]。这使得滑坡的时空 

分布在一定程度上可预测预报。不同空间尺度上，滑坡 

的分布特征有所不同：在较大尺度上，受区域地貌影响 

较 大 ； 而 在 较 小 尺 度 上 ， 局 部 地 形 和 岩 性 起 决 定 作  

用 [10]。通过理解这些规律，可以为滑坡的空间分布与 

演化趋势提供科学依据，从而提高滑坡预测的准确性， 

识别潜在风险区域，优化灾害防治策略。 

滑坡空间预测主要指在空间上对滑坡进行灾害识 

别与发生概率评估，通过分析斜坡变形破坏的主控因 

素，建立指标体系并进行量化，结合定性、半定量、统计 

学、浅层机器学习和深层机器学习等评价方法开展易发 

性预测。进一步结合气象预报和易损性分析，可实现滑 

坡风险评估，提供未来预测结果（图1）。 

1.1 滑坡空间预测研究进展 

滑坡灾害空间预测研究方法大体经历四个发展阶 

段：定性方法→半定量方法→统计学方法和机器学习 

方法。 

1.1.1 定性方法 

20世纪60年代，前苏联、美国和意大利等国家地质 

学家开始对滑坡发育机理与灾害预测展开探索性研究。 

但由于计算机尚未普及，遥感技术还不完善，研究者们 

所能采用的方法有限。当时的滑坡灾害空间预测主要 

依靠非统计手段，强调野外调查、图件解译和专家经验 

判断 [11]。例如，Dobrovolny [12]基于已有地质资料，尝试 

应用专家评分法对美国阿拉斯加州Anchorage地区滑坡 

灾害易发区进行细分。这些方法主要依赖专家经验，对 

数据质量的要求不高，是一种典型的定性划分方法。其 

优点是操作简便、对数据要求不高，能够在资料不足的 

图1 空间预测思路图 
Fig.1 Diagram for Spatial Prediction  
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情况下快速获得结果，因而成为早期研究中常用的定性 

划分方法。然而，该方法也存在明显局限性：高度依赖 

专家个人的专业素养与经验积累，主观性较强；若研究 

者缺乏对研究区的深入了解或对地质环境的把握不够 

全面，预测结果往往会出现较大误差导致错判。 

1.1.2 半定量方法 

20世纪70年代，随着数据分析方法的发展和计算机 

处理能力的提升，滑坡空间预测半定量评估逐渐兴 

起 [13]。传统研究多依赖经验判断，难以在复杂地质环 

境中获得稳定结论，而半定量方法则提供了新的解决途 

径。其中，模糊综合评判法 [14]、层次分析法 [15]与灰色理 

论模型法 [16]是半定量方法中的代表性手段。模糊综合 

评判法通过隶属度函数处理模糊与不确定信息，适合在 

多因子作用下评价滑坡危险性；层次分析法利用分层结 

构和专家判断确定权重，逻辑清晰，常用于区域性易发 

性制图；灰色理论模型法源于灰色系统理论，尤其适用 

于数据有限或信息不完整的情境。这些半定量方法在 

数据不完备、系统复杂的情况下表现出较强适应性，能 

够结合专家经验与统计学理论，快速提供合理结果。 

1.1.3 统计学方法 

20世纪80年代，国内外学者对滑坡灾害空间预测的 

重视程度不断加强，很多学者开始将回归分析、判别分 

析等数理统计模型应用到滑坡易发性成图中。统计学 

方法通过建立滑坡发生与致灾因素之间的联系来进行 

易发性评价，主要方法包括分形理论 [17]、逻辑回归 [18]、 

信息量 [19]等。其中，信息量方法最早由中国地质大学 

（武汉）晏同珍教授应用于滑坡空间预测制图中，并在全 

国范围内推广使用 [20]。其核心思想是通过计算不同因 

素组合对滑坡灾害预测所提供的信息量来评估滑坡发 

生的风险，总信息量值I可根据公式（1）进行计算：  
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式中，I为评价区某单元信息量预测值；S0 
i为因素xi 

单元中发生滑坡灾害的单元面积之和；S i为因素xi所占 

单元总面积；A0为已经发生滑坡灾害的单元面积之和；A 
为区域内单元总面积 [21]。信息量法通过计算各影响因 

素的信息量值Ii，并将其叠加为总信息量I，作为评价单 

元地质体稳定性的综合指标。通过对I值的聚类分区确 

定分界点，将区域划分为不同易发性等级，从而实现滑 

坡灾害空间预测 [22]。 

1.1.4 机器学习方法 

浅层机器学习方面，随着计算机技术和数据分析方 

法的不断进步，20世纪90年代后期，滑坡灾害空间预测 

逐渐引入了机器学习方法，成为重要研究方向 [23]。机 

器学习方法通过从大量历史数据中自动发现规律，可以 

对滑坡易发区进行更客观和高精度的预测，主要包括支 

持向量机 [24]、随机森林 [25]、人工神经网络 [26]、决策 

树 [27]等。但是这些模型只是浅层学习，很难捕获更多 

隐藏在深层的输入数据之间的内在特征 [28]，难以充分 

探索输入变量之间的非线性相关性 [29]。 

因此，自2010年代以来，深度机器学习方法凭借其 

卓越的特征提取与大规模数据处理能力，在滑坡灾害空 

间预测研究中展现出显著优势，并逐渐成为该领域的主 

流方法 [30]。该方法能够捕捉非线性特征和时空相关性， 

同时提升预测精度与可解释性 [31]。在不同工程背景和 

数据条件下，深度神经网络、卷积神经网络、生成对抗网 

络及其组合模型表现出较高的预测能力 [32，33]。此外，结 

合图神经网络、循环单元及注意力机制的方法能够刻画 

滑坡的复杂时空关系并增强模型解释性 [34]。综合来看， 

多模型、多源数据和可解释性设计的结合，使深度学习在 

滑坡易发性评价和变形预测中逐渐成为高效可靠的技 

术手段，为工程决策和灾害防控提供了重要支持。 

随着研究手段的发展，滑坡空间预测方法在精度、 

适用性和计算复杂度方面不断提升。为便于方法比较 

与选择，本文基于前人研究成果构建了“滑坡空间预测 

方法对比表”（表1），从适用尺度（区域/地段/场地）、数据 

需求、预测精度、优势与不足等维度，对定性、半定量、统 

计学及机器学习四类方法进行了系统分析。 

1.2 滑坡空间预测挑战 

滑坡空间预测与风险评估仍面临诸多挑战。首先， 

如何实现区域与单体、时间与空间的一体化分析。滑坡 

灾害既涉及局部斜坡稳定性问题，也受区域尺度多因素 

的综合作用影响，而其时空特性又极为复杂，多尺度综 

合分析仍是关键难题 [36]。其次，不同区域的斜坡稳定 

性受地形、气候、土壤、植被等主控因素共同作用，如何 

科学识别并量化这些因素，尤其是在不同地质与气候条 

件下甄别最具影响力的要素，是提升评估精度的核 

心 [37]。此外，滑坡空间预测亟需构建科学合理的评价 

指标体系，以全面反映滑坡发生机制，但目前在指标选 

取、权重分配及数据不确定性方面仍不完善，限制了体 

系的科学性与适应性 [38]。最后，滑坡往往与极端天气 

密切相关，动态风险评估与气象联动预警尤为重要，但 

在实时数据整合、模型时效性与准确率提升以及结果快 

速传递和应用方面，仍存在挑战 [39]。 

2 滑坡灾害时间预报 

滑坡灾害时间预报主要指时间上的临灾预警，回答 

“什么时候”可能发生滑坡，是面向公众的灾害预警发布 
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行为。自20世纪20年代起，滑坡时间预报研究经历了从 

单一模型向多方法协同发展的变化。其发展脉络可系统 

归纳为五个阶段 [3]：（1）现象与经验预报，主要依托宏观 

征兆识别和工程地质调查的经验性方法；（2）统计预报可 

细分为线性统计（以数理统计分析为核心，通过构建理论 

模型并拟合时间—位移曲线进行预报）和非线性统计（采 

用神经网络、支持向量机、决策树等非线性预报方法）； 

（3）关联要素阈值预报，通过分析滑坡失稳相关要素的阈 

值进行预报；（4）物理力学机制预报，通过构建地质、本 

构、水文物理模型，利用解析或数值方法进行滑坡预报； 

（5）“数据—物理力学机制”双驱动新范式，得益于人工智 

能（Artificial Intelligence，AI）技术的发展，尤其是与物理 

模型、力学机制、多源数据的深度融合，推动预报方法向 

智能化、精细化与机理—数据协同方向演进（图2）。值得 

注意的是，第（5）阶段的研究进展代表了滑坡预报领域的 

最新成果，本文将在第3节和第4节对其进行专题探讨。 

2.1 滑坡时间预报研究进展 

2.1.1 现象与经验预报 

20世纪20年代，苏联、瑞典等欧洲国家对滑坡形成 

初步认知，仅开展基础性的现象记录，尚未建立预防预报 

的研究体系；我国对滑坡的科学观测始于20世纪50年代， 

初期以地表变形痕迹的简单记录为主。整体而言，该阶 

段全球范围内的滑坡预报研究仍处于零散观测阶段，缺 

乏系统性的理论构建与技术方法探索 [40]。20世纪60年 

代，Saito [41]通过室内蠕变试验，对均质滑体变形过程开 

展监测，系统解析蠕变型滑坡渐进破坏的三阶段特征：初 

始蠕变阶段速率递减，等速蠕变阶段速率稳定，加速蠕变 

阶段速率激增。基于坡表位移时程曲线的速率演化规 

律，提出了Saito模型，成功预报了1970年日本高场山隧 

道滑坡。现象与经验预报的特点是无需复杂的数学推 

导和试验验证，缺点在于依赖先验知识，误差较大。 

2.1.2 统计预报 

统计预报阶段是在现象经验预报的基础上发展起 

来的，主要特点是引入数理统计方法与机器学习等方 

法，关注滑坡变形的统计特征、时间序列特征。该阶段 

可细分为线性预报阶段和非线性预报阶段。 

（1）线性预报 

进入20世纪80年代后，随着灰色系统理论与模糊数 

学的兴起及发展，学者们基于这些理论建立了多种滑坡 

时间预报模型。例如，引入GM（1，1）模型对滑坡位移— 
时间曲线进行拟合 [42]；同时，学者将Verhulst生物生长模 

型引入滑坡时间预报领域，基于滑坡滑移与生物生长过 

程的相似性，构建位移—时间曲线拟合模型 [43]。这些 

方法使滑坡时间预报从定性、半定量分析向定量分析迈 

出了重要一步。 

（2）非线性预报 

受20世纪90年代系统论与非线性科学理论的影响， 

学者们发现传统的线性统计方法难以准确描述滑坡这 

一复杂系统。为此，他们引入了适用于复杂问题的非线 

性理论体系，诸如逻辑回归 [44]、贝叶斯统计法 [45]等来研 

究滑坡时间预报问题。21世纪以来，计算机技术与数理 

统计方法的飞速发展为数据驱动的滑坡预报提供了关 

键技术支撑。研究者以神经网络 [46]、支持向量机 [47]等 

数据密集型预报方法，实现对滑坡变形趋势的预报，相 

关模型已在滑坡时间预报中得到广泛应用，如通过引入 

时序遥感数据和改进滤波方法，可实现三维滑坡变形预 

表1 滑坡空间预测方法对比表 
Table 1 Comparison of Landslide Space Prediction Methods 

方法类别 适用尺度 [35] 数据需求 预测精度 优势 不足 

定性方法 多用于大区域、 
初步调查阶段 
（区域尺度） 

专家经验、野外调查、 
已有图件/资料，数据 
量低 

精度较低，以定性划分 
为主（缺少量化指标） 

操作简单、数据要求 
低、可快速获得结果 

主观性强，依赖专家 
经验；难以量化； 
不同专家结论差异大 

半定量方法 多用于区域至 
地段尺度（中尺度） 

需一定的因子数据 
（如地形、地质、植被等） 
+专家判断/权重分配 

精度中等，可优于纯定 
性，但通常不如统计学/ 
机器学习方法 

结合专家经验与 
一定的数学/逻辑 
方法，在数据不完备、 
系统复杂的情况下 
表现出较强适应性 

权重分配主观性较强； 
难处理高度非线性 
关系；不同方法结果 
一致性不足 

统计学方法 区域至较精细 
地段尺度 

较多历史滑坡数据、 
致灾因子数据、 
统计模型 

精度较好，在许多案例中 
取得可接受的结果； 
广泛用于滑坡空间预测 

数理模型透明、 
定量化程度高、 
结果可解释性较强 

对数据完整性和质量 
敏感；难以捕捉复杂 
非线性与时空变化 

机器学习方法 地段至场地，甚至 
细尺度（可视为 
高精度预测） 

需要大量历史数据 
（滑坡事件库、各类 
因子）、计算资源、 
训练模型 

精度通常较高，如对于 
滑坡易发区，很多模型 
准确率高于0.90 

能自动学习致灾因子 
与滑坡发生间复杂 
关系，能处理非线性/ 
高维数据，适合大数据 
和深度学习趋势 

数据量需求极大；模型 
复杂，可解释性差； 
容易过拟合；泛化性 
差；计算资源要求高   

996 中 国 科 学 基 金  2025 年  



报并考虑外部因素的滞后效应 [48]。机器学习耦合驱动 

开发的预报模型也是目前重要的学术增长点 [49]。此类 

方法在海量数据处理及非线性关系的建模与解析方面 

展现出显著优势，但对滑坡演化过程中的物理力学机制 

未能充分考虑。 

2.1.3 关联要素阈值预报 

（1）降雨阈值预报方法 

20世纪80年代，学者逐步认识到在诱发滑坡的诸多 

外部因素中，降雨是最主要的触发因素之一。基于滑坡 

与降雨量的定量相关关系，逐步发展出降雨阈值预报方 

法。该方法通过解析诱发滑坡的降雨事件特征（如降雨 

量、降雨强度、持续时间）与滑坡发生的时空关联，确定 

诱发滑坡的降雨临界阈值，进而构建时间预报模型，且 

已在实践中得到广泛应用 [50，51]。该方法可直接关联气 

象监测数据，操作简便且可实时部署，故在滑坡时间预 

报中运用最为广泛。 

（2）运动学阈值预报 

21世纪以来，基于Saito模型中滑坡在加速蠕变阶段 

表现出的位移、位移速率、加速度及曲率等参数的显著 

突变特征，学术界提出了诸多预报判据及阈值确定方 

法，如位移切线角（Tangent Angle，TA） [52]、位移速率比 

（Displacement Speed Ratio，DSR） [53]、位移趋势模型 

（Displacement Trend Model，DTM） [54]、变形概率指数 

（Deformation Probability Index，DPI） [55]等，为滑坡预警 

提供了关键技术支撑（表2）。 

关联要素阈值预报方法的主要优势在于：其能够直 

接关联滑坡发生的外部触发因素，并提供明确的定量预 

警指标；同时具有操作简便、易于应用的特点，因此广泛 

应用于滑坡启滑判识与实时危险预警场景。然而，该模 

型仍然主要基于统计关系，缺乏对滑坡内在物理机制的 

深入理解，且阈值确定往往依赖历史数据，对新情况或 

极端事件的适应性较差。 

2.1.4 物理力学机制预报 

2010年代以来，在新一轮科技革命与新质生产力发 

展需求的驱动下，多场协同监测技术实现跨越式发展， 

为滑坡时间预报理论注入新的活力，也使得滑坡启滑机 

制与判据研究取得了突破性进展。针对分布广泛且危 

害突出的锁固解锁型、静态液化型及动水驱动型三类典 

型滑坡 [56]，本团队及其他学者依托我国西南山区和三 

峡库区重大滑坡开展了长期原位观测与试验研究，揭示 

了三类典型滑坡的失稳机理分别表现为应力集中—锁 

固失效—解锁滑移、剪切蠕变—结构塌陷—液化滑移、 

渗流驱动—强度劣化—启动滑移 [57-61]。这三类滑坡的 

结构组成与演化过程具有典型性，探究其启滑机制及判 

据，对于构建基于演化过程与物理力学机制的滑坡预报 

理论体系、实现预报领域的重大突破具有重要示范意 

图2 滑坡时间预报研究历程 
Fig.2 Research History of Landslide Time Prediction  
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义 [62]。然而，当前滑坡研究存在关键瓶颈：物理力学机 

制、现有预报模型与监测数据的兼容性不足，难以有效 

联动，亟待突破。为此，需以滑坡物理力学机制为核心， 

构建覆盖其演化全过程的物理力学模型，同时深度融合 

实时多场监测数据，建立滑坡数值预报模式，最终形成 

“数据—物理力学机制”双驱动滑坡预报模型。 

2.2 滑坡时间预报挑战 

滑坡时间预报预警仍面临诸多挑战。滑坡时间预 

报以监测指标（如位移）—时间数据为核心，辅以外动力 

因素分析，存在明显局限性：位移及相关多场监测仅反 

映滑坡演化表象，外动力因素作为诱因与滑坡失稳缺乏 

直接物理关联；同时，传统统计模型与岩土力学机制结 

合薄弱 [63，64]。近年来，深度学习大模型（如DeepSeek、 

ChatGPT、Grok）、知识图谱等技术快速发展，但与滑坡 

时间预报兼容结合仍待深入探索。具体表现为：大模型 

虽在多元数据分析中表现突出，但本质仍属数据驱动， 

需强化与物理机理的融合；知识图谱虽能构建多源致灾 

链网络，但面临动态实时性不足、地质语义模糊等可靠 

性问题；在技术集成层面，大语言模型与数值模拟软件 

的对接存在数据接口不兼容、实时性需求与计算耗时矛 

盾等问题。此外，数值模拟虽能精确解析岩土体应力应 

变过程，却受限于参数敏感性及高计算成本，与AI协同 

仍依赖多场监测数据融合 [65]。 

3 基于演化的滑坡灾害预测预报 

滑坡作为一种复杂的地质灾害，其发生过程往往是 

渐进而非突发性的，它是坡体累积变形的结果 [66]。在 

不同的地质条件、地形地貌及诱发因素等作用下，滑坡 

致灾模式呈现出高度的非线性和动态性特征。滑坡演 

化过程在滑坡预测预报中起着核心作用，主要包括滑坡 

的演化模式、演化阶段及演化状态。演化模式是研究演 

化阶段和演化状态的基础，演化阶段作为演化状态的时 

空边界，演化状态是演化阶段的评价指标（图3）。通过 

深入开展基于演化的滑坡预测预报研究，不仅能够精准 

把握滑坡时空演化规律，更为防灾减灾工作提供科学可 

靠的决策依据，从而有效降低滑坡灾害带来的风险。这 

一研究路径正是“数据—物理力学机制”双驱动的重要 

实践，标志着滑坡预测预报方法正逐步从经验性分析走 

向数据与机理融合的科学范式。 

3.1 滑坡演化模式 

滑坡在形成、发展和破坏过程中会呈现出不同行为 

特征和力学机制，据此将滑坡的演化分为渐进型和突发 

型。受地质结构、气候条件、地质演化过程等多种因素 

的影响，以滑坡结构为主控因素、地质演化为核心，可以 

将滑坡演化模式分为六种：顺层缓倾渐进滑移、顺层缓 

倾蠕变溃屈、高陡反倾弯折滑移、斜交切层贯通突滑、深 

层顺向蠕变滑移和软弱夹层塑流滑脱 [10]。 

表2 滑坡时间预报判据及阈值表 
Table 2 Criteria and Thresholds for Slope Time Prediction 

指标 核心公式 判据 典型阈值 [52-55] 
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在工程实践中，顺层边坡则因岩层倾向与坡面一 

致，滑动往往沿层理面发生，演化模式相对单一；反倾边 

坡因其岩层倾向与坡面方向相反，滑动面常沿不连续面 

（如节理或层理）形成，使其演化模式更为复杂。以反倾 

层状岩质边坡为例，根据边坡不同区域变形程度的差 

异，可将其分为强倾倒区、中倾倒区、弱倾倒区和未倾倒 

区；根据对边坡变形区域的应力分析，可将变形区分为 

稳定区、倾倒区和滑移区 [67]；而随着地质演化时期的推 

移，根据倾倒体变形量的不同，可将滑坡的变形演化分 

为原始斜坡、倾倒变形触发阶段、倾倒变形加速阶段、倾 

倒变形自稳阶段及强倾倒岩体失稳阶段。由此可见，反 

倾边坡在应力、时间等因素综合作用下，其致灾模式更 

加难以预测。 

3.2 滑坡演化阶段 

滑坡的演化是一个连续且具有阶段性特征的过程， 

滑坡在不同演化阶段其变形速率、宏观现象、力学性质 

等方面均存在着明显差异。在进行滑坡演化阶段划分 

时，可依据滑坡渐进破坏裂缝展布及其空间组合方式， 

提出不同演化阶段的滑坡裂缝分期配套体系，将斜坡变 

形演化规律与滑坡裂缝分期配套体系有机结合，从而对 

滑坡演化阶段进行定量划分。 

根据滑坡的诱发因素，可将滑坡分为自然滑坡和工 

程滑坡。通过工程地质准则、数值模拟准则及多场监测 

准则对滑坡演化阶段进行综合判识，团队将自然滑坡和 

工程滑坡的变形破坏阶段划分为初始变形、匀速变形、 

加速变形和整体破坏四个演化阶段 [10]。此外，还可依 

据滑坡渐进破坏规律、改进Chow分割理论、CSDI（The 
Comprehensive Standardized Deformation Index）模型 [68] 

等对滑坡演化阶段进行划分和预测。 

3.3 滑坡演化状态 

滑坡每个演化阶段的特性不一样，即使进入最后一 

个演化阶段，坡体也不一定产生滑动，所以需要进行滑 

坡演化状态判识，演化状态是判断滑坡能否由一个演化 

阶段进入另一个阶段的评价指标。以大型顺层滑移为 

例，将滑坡弱化系数引入滑坡演化方程，提出强度弱化 

系数方程，如式（2）所示 [69]，以此为基础提出滑坡演化 

系数的概念，利用演化系数分析滑坡演化状态，这是一 

种定量和定性相结合的方法；也可以依据运动学特征 

（演化状态与监测标准化位移、速度、加速度和加加速度 

的关系）进行状态判识，如根据标准化的时间—位移曲 

线将滑坡演化状态划分为演化状态I减速位移、演化状 

态Ⅱ等速位移、演化状态Ⅲ弱增速位移和演化状态Ⅳ强 

增速位移，其中演化状态Ⅳ强增速位移又可分为临滑和 

非临滑两种 [10]。  

k x A
a x l

l

H=
1 + exp 2

+ 2

式中，k为滑带弱化系数；λ为演化阶段系数；x为涵 

盖位置；A为弱化幅值；H为弱化极限值，H+A=1；a为曲线 

形态控制系数；l为滑带长度 [70]。 

图3 滑坡演化模式、演化阶段及演化状态关系 
Fig.3 Relationship of Evolutionary Mode，Stages，and States  
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本章基于滑坡演化模式、演化阶段与演化状态的系 

统划分，揭示了滑坡孕育、发展与失稳的动力学演化特 

征及控制机制，为构建数值预报模式中的物理力学模型 

与启滑判据提供理论依据，同时支撑滑坡灾害数值预测 

预报模式的开展。 

4 滑坡灾害数值预测预报模式 

在基于演化的滑坡灾害预测预报研究基础上，团队 

总结出动水驱动型、锁固解锁型和静态液化型三类重大 

滑坡启滑的共性物理力学机制：动力触发—损伤演化— 
滑坡启滑，并据此建立了滑坡启滑的统一判据。再结合 

物理机制与数据驱动方法，针对三类滑坡的地质演化特 

征建立了滑坡数值预报模式，并以此为基础建立国内外 

首个集成地质力学模型与外动力不确定性表征、演化过 

程实时更新、启滑预测模型的滑坡数值预报平台 [60]。 

4.1 滑坡启滑的统一判据 

滑坡启滑判据是判定滑体由稳定或缓慢变形进入 

整体失稳临界状态的条件，本团队基于典型案例与多场 

监测数据提取关键特征参量，总结出滑坡演化模式和阶 

段，并结合土工试验构建滑坡演化物理力学模型，据此 

提取基于动力学特征的启滑判据 [63]。其中，考虑损伤 

—硬化竞争机制的统一判据见式（3）。  
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式中，εij为应变张量分量；Sij为偏应力张量分量；G0 

为瞬时弹性剪切模量；G1为延迟弹性剪切模量；λ1为开尔 

文体延迟弹性系数；η1为黏滞系数；t为时间；F为屈服函 

数；F1为塑性势函数；σij为应力分量；ξ为塑性硬化系数； 

η2为塑性黏滞系数。 

该判据基于损伤力学与硬化机制理论构建出三维 

本构模型，可反应出结构性土体蠕变过程中衰减、稳态等 

阶段的力学状态，突破传统单一力学机制模型的局限，为 

不同蠕变阶段的统一分析提供理论支撑。目前该判据适 

用于具有显著蠕变特征的大型崩积滑坡工程，尤其针对 

滑带土体结构属性及水位波动等应力条件对蠕变行为起 

关键作用的场景。通过二次开发可将其嵌入三维有限差 

分仿真软件FLAC3D等主流岩土数值模拟软件，实现滑 

带及滑坡复杂蠕变行为的数值求解，并拓展其适用范围。 

4.2 滑坡数值预测预报模式与平台 

本团队基于物理力学机制，融合多场监测数据，构 

建了滑坡灾害数值预测预报模式。该模式通过耦合物 

理过程与数据驱动方法，显著提升了预警的准确性及时 

效性。在此基础上，团队进一步开发了国际首个集成地 

质力学建模、外动力不确定性表征、演化过程实时更新 

与启滑预测于一体的滑坡数值预测预报平台。该平台 

实现了从理论模型到业务化应用的跨越，与国内外现有 

地质灾害预报系统相比，在机理表达和动态预报能力方 

面具有明显优势 [60，63，71]。 

构建滑坡灾害数值预测预报模式首先需要收集区 

域地质要素及外部动力作用因素，基于滑坡的物理力学 

机制和启滑判据等，建立对应的地质模型；再采用数值 

模拟方法对地质模型进行系统模拟，根据物理力学本构 

方程开展滑坡的动态模拟与失稳概率分析；最后依托贝 

叶斯理论，利用实时传输的多源监测数据更新地质模型 

边界条件、岩土体强度参数及外部动力荷载。基于更新 

后的高置信度模型，开展滑坡变形演化过程数值仿真与 

启滑时间概率预测，从而构建集地质模型与外动力因素 

不确定性表征、滑坡物理力学过程实时动态更新、启滑 

概率预测于一体的滑坡数值预测预报模式（图4）。目前 

该模式已经初步应用到三峡库区长江右岸的黄土坡滑 

坡，滑坡处于缓慢变形阶段，其中临江1号体东部最大累 

计变形量达80.6 mm，处于欠稳定状态 [72]。 

滑坡数值预测预报平台包含本底感知、实时观测、数 

据挖掘、数值预报与三维建模五大核心模块，其功能交互 

流程如图5所示。其中，本底感知模块通过工程地质调查 

获取地质岩性、结构面参数；通过钻探、物探（如高密度电 

法、地震反射等）获取深部地层结构与隐伏构造信息；通过 

高分辨率遥感影像（如InSAR、无人机航测）进行宏观地形 

地貌解译、历史变形痕迹识别，从而采集地质要素数据。 

实时观测模块涵盖地表变形、深部变形、环境因素 

三大类，共计63种参数。主要包含地表变形类（GNSS位 

移、裂缝宽度、地表倾斜角等）、深部变形类（柔性测斜仪 

轨迹等）、应力类（孔隙水压力、锚索应力、土压力等）、环 

境因素类（降雨量、地下水位、气温、地温等）以及辅助因 

素类（视频监控、声发射等）。 

数据挖掘模块的核心功能是基于数据驱动方法实 

现滑坡的动态状态评估和位移预测。核心算法包括：基 

于统计方法和机器学习，建立数据驱动的预警准则（如 

DPI），将位移速度转化为标准化的预警级别 [55，68]；采用 

图卷积网络（Graph Convolutional Network，GCN）等深度 
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学习架构，用于捕获监测点之间的空间相关性，实现全 

局位移场预测 [73]；引入生成对抗网络（RGAN-LS）等技 

术对有限的监测数据进行增强，以优化模型对突变点等 

关键特征的识别能力，提高短期预警的准确性 [74]。 

数值预报模块基于滑坡关键地质体的本构关系 [75] 

与滑坡演化过程动力学模型 [76，77]，对滑坡的稳定性状 

态、潜在失稳模式和演化过程进行模拟。该模块的核心 

功能是通过实时观测数据对物理模型关键参数进行动 

态校正，预测滑坡的位移区间、演化趋势及启滑时刻，提 

供基于物理机制的定量预报结果。 

三维建模模块是平台的统一数据可视化和交互式 

展示界面。它负责将本底感知获取的三维地质模型、实 

时观测的关键参数时序变化、数据挖掘的预警指标以及 

数值预报的模拟结果进行整合与可视化。用户可通过 

图4 滑坡灾害数值预测预报模式流程图 
Fig.4 Flow Chart of Numerical Prediction and Forecasting Model for Landslide Disasters  

图5 平台功能模块交互流程图 
Fig.5 Flow Chart of Platform Function Module Interaction  
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高精度三维场景，直观地查看滑坡区域的实时状态、变 

形趋势和预测预警信息。 

5 结 论 

滑坡预测预报理论是工程地质和灾害地质领域核 

心研究内容之一，是国内外公认的科学难题，当前正处于 

从经验判识向智能演化建模、多源信息融合与机制—数 

据双驱动转型的关键阶段。破解这一科学难题，必须依 

托地球系统科学的整体观与多学科交叉融合思路，协同 

地质、气象、水文、遥感与计算机科学等多学科前沿方法， 

系统构建面向复杂地质—环境系统的预测预报理论和 

技术体系。这已成为推动该领域向前发展的关键路径。 

不同类型的滑坡预测预报方法（如空间预测、时间 

预报、过程演化与数值预测预报）反映了滑坡研究发展 

的不同阶段。尽管各类方法在理论基础与技术路径上 

存在差异，但均具有不可替代的实际应用价值。未来应 

坚持分类施策、优势互补，推动预测预报技术的融合创 

新与系统集成。 

随着人工智能特别是大数据大模型技术的迅猛发 

展，面向滑坡地质灾害多源智能感知、演化识别与动态 

预测的新范式正在加速形成。AI大模型在多源异构数 

据处理、复杂模式挖掘与预测性能提升方面展现出巨大 

潜力，有望成为未来滑坡灾害预测预报研究的重要突破 

口。然而，其在地质学科中的适配性、解释性与可控性 

仍面临诸多挑战，需要加强与机理模型的融合，探索可 

信AI在地质灾害中的应用路径。 

数值预测预报模式在滑坡灾害研究中发挥着日益 

重要的作用，其价值不仅体现在对时空演化过程的精细 

建模，更在于为机理探究、动态预警与防控决策提供了 

更有效的分析工具。该研究兼具物理机制与数据驱动 

方法的双重优势，具有良好的可拓展性和融合性。未来 

研究应更加注重通过实际工程案例验证其适用性与可 

靠性，重点推动高精度地质—力学建模、多场耦合模拟 

与环境动因实时响应机制的深度融合，从而不断提升滑 

坡预测预报的稳健性、普适性及工程实用价值。 

综上所述，“机理与数据”双驱动不仅代表工程地质 

研究的新范式，更是推动滑坡预测预报从理论走向实践 

的核心路径。多学科交叉、技术融合与系统集成，是应 

对滑坡灾害系统复杂性与不确定性的必然选择，也将深 

刻影响未来地质灾害防治技术体系的构建。 
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Advances and Challenges in Landslide Prediction and Forecasting 

Huiming Tang1, 2* Yunfeng Ge1, 3 Shu Zhang2 Wei Hu4 

1. Faculty of Engineering，China University of Geosciences （Wuhan），Wuhan 430074，China 
2. Badong National Observation and Research Station for Geohazards，Hubei，China University of Geosciences （Wuhan），Wuhan 430074，China 
3. School of Natural Resources Science and Technology，Xinjiang University of Technology，Hotan 848000，China 
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Abstract Landslide disasters are among the most severe geological hazards worldwide，particularly in China，where 
frequent landslides have caused significant economic losses and casualties. Accurate prediction and forecasting of landslide 
disasters are core tasks in disaster prevention and mitigation. This paper reviews the latest progress and challenges in landslide 
disaster prediction and forecasting，focusing on four aspects：spatial prediction，temporal forecasting，evolution-based 
prediction and forecasting，and numerical prediction and forecasting models. Spatial prediction methods encompass a 
range of approaches，including qualitative，semi-quantitative，statistical，and machine learning methods （shallow and deep）. 
Although significant progress has been made，data integration and multi-scale analysis remain major challenges. In terms of 
temporal forecasting，the article summarizes the application status of phenomenological and empirical approaches，statistical 
methods，factor–threshold analyses，and physical–mechanical forecasting. It emphasizes the need to integrate landslide 
evolution mechanisms with multi-field monitoring data. In the field of evolution-based landslide prediction and forecasting， 

this paper discusses the division of landslide evolution models，stages，and states，and their importance for prediction and 
forecasting accuracy. The research on landslide numerical prediction and forecasting models mainly focuses on three key 
areas：unified criteria for identifying landslide initiation mechanisms，the development of numerical prediction and forecasting 
models，and the construction of integrated forecasting platforms，highlighting their potential in real-time dynamic updates and 
predictions. Finally，the paper looks ahead to future directions in landslide disaster prediction and forecasting research. 

Keywords engineering geology；landslide disasters；prediction and forecasting；advances and challenges  
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坡演化与过程调控理论，发展了滑坡多场关联和大变形监测技术。研究成果广泛应用于三峡库区和西南山区。 
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