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[摘 要] 在气候变化与快速城镇化共同影响下，全球洪涝灾害呈现极端性增强、过程复杂与系统风险 

叠加的演化特征。当前洪水预报方法在应对极端气候、复杂地形与多系统耦合等方面仍存在明显短板， 

难以满足精准预警与减灾韧性防控的需求。本文系统梳理了洪水预报关键要素与技术方法的研究进展， 

包括多源信息感知与降水预报、水文建模与韧性防控；在此基础上，提出未来需要从“要素模拟”向“系统 

防御”转变，构建多源感知与物理—智能融合预报体系，研发面向极端情景的风险识别与响应模型，以及 

具备动态适应能力的水利工程韧性重构路径；建议加强变化环境下的极端洪水机理解析、跨尺度事件预 

报能力、灾害链式风险建模研究，并推动“工程+信息”一体化智能防控体系构建。 

[关键词] 洪水预报；极端气候；风险防控；韧性工程；适应性设计  

1 变化环境下洪水预报方法面临的挑战 

由于特殊的地理位置与复杂的地形条件，受季风气 

候影响，我国暴雨洪水多发、洪涝灾害严重，防洪问题一 

直是国家安全与发展的重大隐患 [1]。作为全球洪涝灾 

害最严重的国家之一，我国有2/3以上的国土和城市面临 

洪水威胁。在全球气候变暖与快速城镇化背景下，防洪 

形势正面临前所未有的复杂挑战 [2，3]。极端气候事件频 

发已成为不争的事实。联合国政府间气候变化专门委 

员会指出，人类活动导致的全球变暖显著增加了极端降 

水事件的发生概率，暴雨洪水成为造成人员伤亡和经济 

损失的最主要自然灾害类型 [4，5]。根据“克劳修斯—克 

拉伯龙”定律，气温每上升1℃，大气水汽含量增加约 

7%，导致大气环流的不稳定性增加和水汽饱和产生的 

降水量增加，从而增强极端降水 [6]。而气候变暖引发的 

冰川融化、冻土退化及大气环流异常，进一步加剧了洪 

水时空分布的不确定性。同时，我国城镇化水平从2000 

年的36.3%发展至2024年的67.0%，城镇化导致的下垫面 

硬化、生态系统退化等问题，使洪水灾害呈现区域性增 

强、局地性突发及灾害链复合的新趋势，同时流域汇流 

速度加快导致洪水过程“峰高量大” [7]。短历时强降水 

引发的中小河流洪水难以预测，洪水易与泥石流滑坡、 

内涝、风暴潮、海平面上升等形成灾害链条，产生“多灾 

种叠加”风险，严重威胁城乡安全，而城郊和中小城镇在 

基础设施、防洪设施和应急管理能力方面通常较弱 [8]。 

因此，变化环境下的洪水预报面临极端降水强度频次增 

加、流域响应过程非线性增强、灾害链叠加复杂化的多 

重压力，同时给预报调度决策带来新的挑战。 

洪水预报是应用实时监测降雨、蒸发、土壤湿度、河 

流湖库水位等预报基础数据，通过水文预报方法或模 

型，并结合专家知识和经验，对未来特定时段内河流、湖 

库等水体的水位、流量及洪峰发生时间、量级和影响范 

围进行预测预警，是流域防洪减灾和工程调度运行的科 
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学依据。准确及时的洪水预报是应对上述风险的核心 

技术，也是提升区域防灾减灾韧性的关键保障。通过延 

长洪水预报预见期、提高预报预警精度，可有效指导工 

程调度、应急疏散安置和灾后救助决策，最大限度降低 

灾害损失。然而，当前洪水预报仍面临多重瓶颈：传统 

水文模型基于历史数据率定，难以刻画气候和下垫面变 

化情况下的极端降水—径流关系变异特征 [9]；中小流域 

监测数据稀疏与遥感等多源数据反演精度不足制约了 

预报准确性；预报信息与应急决策的衔接不畅则导致 

“预报—预警—预演—预案”全链条响应滞后，需进一步 

提升洪水预报准确性和时效性，为防洪减灾提供可靠支 

撑，同时不断拓展其应用范围。从河道防洪拓展到城市 

内涝、山洪泥石流、水环境调度等多场景、多尺度的综合 

预报，洪水预报的理念与方法正呈现深刻转型。 

因此，在全球气候变暖及人类活动日益加剧的背景 

下，极端水文气象事件增加，我国的洪涝灾害呈现新特 

点，面临新的问题和风险。变化环境下洪水预报研究有 

助于深化认识气候与下垫面耦合作用下“降水—径流” 
非线性响应机制，推动水文气象耦合建模、多源信息融 

合与不确定性研究创新发展，为构建适应环境变化的水 

文学基础理论体系提供支撑；同时为流域防洪工程联合 

调度、城市排涝系统优化、台风、山洪地质灾害、中小河 

流山洪预警机制建设等防御工作提供科学指导，为实现 

减灾降损与区域韧性提升提供技术保障，服务国家水安 

全与可持续发展战略。 

2 洪水预报方法发展及问题 

随着科学技术的不断发展，洪水预报的发展经历了 

最早的经验性降雨径流预报、概念性模型、分布式物理 

模型、水文学与水动力学耦合模型、数据和物理双驱动 

模型以及AI与水文模型相结合的智能预报模型等过程， 

与科学技术特别是信息技术的发展有着密切的关系。 

目前，下述几方面取得了明显的发展。 

2.1 多源信息感知融合与降雨预报 

2.1.1 水文与下垫面信息感知与同化融合 

水文要素的动态感知与融合是验证洪水预报精度与 

适应性的基础。近年来，地面水文数据获取呈现非接触、 

远程化、低成本、智能化的趋势。非接触式的雷达、激光 

和超声波水位计得到广泛应用，基于物联网的水位监测 

网络结合低功耗通信，实现了实时数据回传与异常报警。 

地基微波/激光测速仪和河岸雷达能够在洪水高危环境下 

安全获取流速 [10]。基于无人机影像和河道视频监测的 

粒子图像测速和AI视频流速反演技术，能够快速估算浅 

水河道和城市排水流量 [11]。我国相继发射了“高分多 

模”“陆地探测一号”“水利一号”等系列光学与微波遥感 

卫星，通过卫星、无人机、地面物联网（Internet of Things， 

IoT）及实测网络的协同应用，逐步形成了时空分辨率互 

补、信息维度多元的观测体系。例如，传统水位站结合新 

兴的全球导航卫星系统（Global Navigation Satellite 
System，GNSS）反射信号（GNSS-R）与星载合成孔径雷达 

（Interferometric Synthetic Aperture Radar，InSAR）技术 [12]， 

能够在广域范围内监测河湖水位变化。 

以多模态数据与深度学习为核心的新一代水文信 

息反演和融合技术在精度、时空分辨率和时效上取得较 

大突破。多源数据或多算法融合 [13]、深度学习模型 [14] 

以及时空超分辨率重建显著提高了蒸散发数据的空间 

连续性和精度。湖泊监测由年尺度向月尺度演进 [15]； 

土壤水分产品已实现全球尺度快速更新 [16]。这些高时 

空分辨率数据通过同化技术被引入水文模型，显著提升 

了全球及区域尺度洪水模拟与预报的精度 [17]。 

下垫面信息感知与融合也取得了较大的突破，国内 

外学者相继发布了多种精细化下垫面数据产品，如中国 

地块级城市土地利用 [18]、中国30米分辨率森林空间分布 

数据集 [19]、10米分辨率东亚湿地精细分类图 [20]等一系列 

下垫面精细数据产品。这些分辨率更高、分类更细的数 

据，有望为解决土地利用/覆被与地貌变化对流域径流模 

拟与极值分析的影响提供关键数据支撑 [21]，同时为雨量 

观测精度提升、降雨预报准确性增强提供有力数据保障。 

2.1.2 雨量观测信息感知与融合 

面雨量的计算是决定预报精度的关键。地面雨量 

站、地面和星载降雨雷达构成了当前降水观测的三大核 

心技术体系。地面雨量站提供长系列高精度点位数据， 

是各类降雨监测手段定标的基础；地面降雨雷达具备高 

时空分辨率的区域连续监测能力，发挥了连接点位观测 

与大范围探测的桥梁作用；星载降雨雷达则实现全球尺 

度、海陆一体的降水探测，为地面观测稀缺区域提供关 

键补充。近年来，物联网传感器、低功耗通信和自动化 

质控技术显著提升了雨量站的实时监测能力与数据完 

整性；基于无线通信链路的降雨反演逐渐成熟，提供线 

状降水信息 [22]；基于GNSS的低成本降雨观测站因易于 

部署而成为雷达网络的重要补充 [23]。在地面天气雷达 

方面，C/S波段双偏振雷达正在取代单偏振设备，能够区 

分雨、雪、冰雹并提高雨强估计精度；X波段相控阵雷达 

则专注于近距离精细探测 [24]。在星载技术方面，双频 

降水雷达与多通道微波辐射计已成主流方案，如风云三 

号G星搭载的Ku/Ka双频雷达显著增强了轻雨、雪及热 

带暴雨的识别能力 [25]。 

除单一技术的突破外，多源观测的协同集成正在加 
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速构建“点—线—面—全球”一体化降水监测体系，实现 

相互校准与优势互补，共同服务于水文气象研究与极端 

天气预警（图1）。地面站与雷达网络的优化布局正从经 

验式布设转向基于多源数据融合与智能算法的科学设 

计。同时，降水数据多源融合技术不断演进，已由传统 

统计方法迈向深度学习与数据同化 [26]，特别是大数据 

技术和AI技术的应用，可以通过天气系统和降雨特征的 

挖掘分析，提升面雨量计算的精度。 

2.1.3 降雨预报预测研究 

降水短临预报（0~2小时）对防洪调度决策至关重 

要。传统短临预报主要利用地面多普勒雷达回波信号， 

通过交叉相关法（如TREC）等回波外推算法预测降雨平 

移。由于难以捕捉对流单体的生成、发展和消散，预报 

存在较大不确定性 [27]。近年来，基于GNSS的降雨预测 

技术逐渐成熟，这一技术主要根据大气可降水量在强对 

流爆发前快速增长的特点，通过GNSS信号的延迟反演 

大气可降水量，从而间接预测降雨 [28]。此外，地面雷 

达、卫星红外亮温、GNSS监测与闪电定位等多源观测的 

融合不断发展，逐步形成更加完善的短临监测体系，显 

著提升了局地暴雨的捕捉和预警能力 [29]。 

短中期预报（3小时~15天）主要依赖数值天气预报， 

通过求解大气动力学与热力学方程来预测未来大气状 

态。近年来，全球模式（如ECMWF）与区域模式（如CMA- 
MESO）的空间分辨率不断提高，对云微物理、边界层和 

地表过程的刻画能力不断增强 [30]，通过多模式集合预报 

大幅度降低了预报不确定性。相比之下，中长期预测（10 
天—数月）更侧重于季节性环流与海气相互作用， 如厄 

尔尼诺—南方涛动（El Niño-Southern Oscillation， 

ENSO）、印度洋偶极子（Indian Ocean Dipole，IOD）等低频 

信号的模拟与分析。近年来，集合预报系统（如CFSv2） 

与气候模式的深度耦合，以及统计—动力学方法的结合， 

使干旱、洪涝等趋势性事件的预测逐步从定性走向准定 

量，为防灾减灾和水资源管理提供更有力的科学依据。 

深度学习已成为降雨预测的重要手段，尤其在短临 

与短中期尺度表现突出。相比受限于初始条件误差和 

物理假设不完善的传统方法，深度学习可直接从大规模 

图1 水文和降水多源感知融合技术 
Fig.1 Integrated Multi-source Sensing Approach for Hydrological and Precipitation Monitoring  
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观测和模拟数据中提取复杂的时空特征，实现数据驱动 

的预测。例如，卷积神经网络被广泛用于卫星云图、雷 

达拼图的空间特征提取，长短期记忆网络被用于降雨时 

序变化的模拟预测，两者的结合被用于实现雷达回波的 

外推与强度演变模拟 [31]，生成的对抗网络和扩散模型 

被用于降水场的时空超分辨率重建 [32]。近年来，深度 

学习与数值模式的融合（AI-augmented NWP）开始兴起， 

国内外机构已经发布多个气象大模型，如伏羲和盘古气 

象大模型 [33]。这些模型实现物理机理与数据驱动的优 

势互补，为极端降雨预警、洪水模拟和城市防灾提供新 

的技术支撑。 

2.2 洪水预报模型研究 

洪水预报模型是防灾减灾体系中的中枢“大脑”，其 

技术发展关乎国民安全与气候韧性建设的战略需求。相 

关技术分为“物理机理”与“数据驱动”两个方向并进（图 

2）。两线技术在高分辨率遥感、物联网观测与高性能计 

算支撑下加速融合，可微分建模与自动微分技术将物理 

方程嵌入深度网络，催生“物理感知AI”模型，为构建高分 

辨率、长预见期的数字孪生流域预警体系奠定坚实基础。 

2.2.1 经典物理模型的发展 

经典物理模型主要指基于流域物理过程的水文模 

型，包括概念性集总模型、分布式物理模型以及水文— 
水动力耦合模型等。集总模型将流域视为整体，以物理 

方程和参数表征产汇流过程，计算量低，适用于资料匮 

乏区。例如，河海大学赵人俊 [34]在20 世纪 60至70 年代 

提出的新安江模型（XAJ）以“蓄满产流”理论为核心，采 

用指数型张力水与自由水蓄水容量曲线刻画流域蓄水 

空间异质性，在全球得到广泛应用。北欧HBV模型由瑞 

典水文气象研究所于1970年代开发 [35]，通过分层水量 

平衡方程与经验率定，在有限算力条件下实现稳定的降 

水—径流模拟。 

随着计算与资料获取能力提升，分布式物理模型自 

20 世纪 80至90 年代兴起。该类模型将流域离散为网格 

或子流域，利用方程组耦合降雨入渗、地表径流、地下水 

与河网汇流，能够直接调用下垫面与气象场的空间信 

息，适用于土地利用变更与强非线性过程分析，但分布 

式模型参数众多、计算量大。SHE/MIKE-SHE为早期代 

表，通过降雨、地下水与河网模块联解偏微分方程，实现 

全流程分布式仿真 [36]。为平衡空间精细度与效率，出 

现 了 半 分 布 式 / 混 合 模 型 ； 其 中 可 变 下 渗 容 量 模 型  

（Variable Infiltration Capacity，VIC）以网格为单元，通过 

变渗透能力曲线描述网格尺度入渗差异，并耦合能量平 

衡，实现水量与能量通量同步模拟，现已服务于NLDAS 
2等国家尺度连续洪水预报业务 [37]，在国内也得到了较 

为广泛的深入研究和应用。 

传统水文模型仅输出流量过程，难以解析河道水位 

与漫滩淹没影响。为此，需将产流结果与求解圣维南方 

程的一维/二维水动力模型耦合，形成水文—水动力一体 

化 预 报 框 架 。 典 型 模 型 包 括 美 国 陆 军 工 兵 团 的  

H E C - R A S  [ 3 8 ] 、 欧 洲 洪 水 预 警 系 统 E FA S 采 用 的  

LISFLOOD [39]和日本CaMa Flood模型 [40]，前两者分别 

侧重断面—网格水动力演算与流域水量平衡—洪水传 

图2 洪水预报预测模型发展历史 
Fig.2 Evolution of Flood Forecasting and Prediction Models  
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播耦合，后者通过洪泛区参数化实现更大尺度的演算。 

2.2.2 数据驱动方法的应用 

近年来，数据驱动方法在洪水预报领域蓬勃发展。 

相比依赖流域机理认知与经验参数校准的传统物理模 

型，此类方法借助统计学习与人工智能手段，从历史观 

测中自动提取洪水演变规律，满足样本量与分布假设 

时，可显著提升预报精度与运算效率 [41]。早期统计模 

型（多元回归、时间序列分析）及传统机器学习算法（支 

持向量机、决策树等）虽已用于降雨—径流关系拟合，但 

其非线性刻画能力有限。深度学习兴起后，为洪水模拟 

提 供 了 高 维 非 线 性 映 射 工 具 ， 其 中 循 环 神 经 网 络  

（Recurrent Neural Network，RNN）应用尤为广泛 [42]。长 

短期记忆网络（Long Short-Term Memory，LSTM）模型 

凭借“记忆门”机制有效克服了传统RNN在长时序数据 

处理中因梯度消失或爆炸导致的长依赖难题。在美国 

CAMELS（Catchment Attributes and Meteorology for 
Large-sample Studies）数据集的数百个流域上进行统一 

训练并开展区域化预测，结果显示该模型对洪峰及径流 

过程的模拟精度超越经典概念模型Sacramento [43]。 

许多学者也积极探索深度学习在洪水预报中的应 

用，其中Song等提出可微分物理—数据融合框架。Song 
等 [44]将神经网络嵌入美国国家水文模型校准流程，简 

化了烦琐的分站点参数率定，显著提升大尺度流域模拟 

效率。该模型在美国大陆范围训练后，对未校准区域的 

洪水预报精度较传统方案提升约30%，在特殊地质单元 

中的改进尤为突出，同时借助自动微分技术，将水文机 

理方程与深度网络无缝连接。 

除时间序列深度网络外，图神经网络（Graph Neural 
Network，GNN）近年来在水文—水力预测领域展现出独 

特优势 [45]。洪水传播本身具有显著空间依赖性：不同 

子流域经河道连通而相互耦合。传统神经网络难以显 

式刻画此类拓扑约束，而GNN通过将子流域抽象为节 

点、将河道抽象为边构建水文图，可自然学习流域网络 

结构对洪水过程的调控作用。例如，FloodGNN模型与 

LocalFloodNet模型将流域节点与时序递归单元耦合，捕 

捉洪水在空间图中的传播动力，其精度显著优于忽略空 

间依赖的数据模型 [46]。 

数据驱动方法的优势在于能够利用海量历史数据 

和实时资料，不断自我更新提升预测性能。例如，Google 
等机构利用全球卫星数据和地理属性信息，通过深度学 

习的迁移学习能力，首次实现了在缺乏本地流量观测站 

的流域进行准确洪水预警 [47]。这一研究基于开源全球 

降雨与地形数据训练深度模型，无需逐流域参数率定，即 

可取得与国际主流物理模型系统GloFAS相当甚至更优 

的预警效果：在完全未设站的河流上，该模型提前 5天预 

测洪峰的精度已可与GloFAS实时预报精度持平。 

尽管数据驱动模型在洪水预报领域已取得长足进 

展，其局限性亦不容忽视：当遭遇超出训练样本分布的 

极端情景时，模型往往倾向于低估风险。总体来看，数 

据驱动技术已由最初的辅助工具演进为洪水预报体系 

的核心支柱。深度学习算法与机理水文模型的深度耦 

合正逐步成为洪水预报发展的主导范式。 

2.2.3 数字孪生大模型发展 

随着信息技术与水利工程的深度耦合，国内外陆续 

构建了面向流域尺度的洪水预报—预警一体化平台，为 

“数字孪生流域”奠定了基础。此类平台通过实时接入气 

象、水文与水利工程调度等多源数据，耦合多种模型组 

件，实现大范围洪水过程的动态模拟与滚动预测。国际 

上，欧洲洪水预警系统（European Flood Awareness 
System，EFAS）与美国国家水模型（National Water Model， 

U. S.，NWM）最具代表性；我国则在水利部统筹下建成中 

国洪水预报系统（China Flood Forecasting System，CFS）。 

EFAS是首个覆盖整个欧洲的大尺度洪水预警业务 

平台，由欧盟委员会联合研究中心（Joint  Research 
Centre，JRC）自 2003 年起牵头建设 [48]。该系统旨在基 

于各成员国本地预报，提供提前 10日的洪水预警服务， 

以增强跨境洪水防御能力 [49]。其技术核心为“多重气 

象集合预报＋分布式水文模型”框架：EFAS采用降雨— 
径流模型LISFLOOD模拟欧洲主要河网汇流过程 [49]。 

在平台架构上，EFAS实行集中化数据汇聚—分发模式： 

成员国实时上传水文与降雨观测，系统按统一阈值标准 

生成预报产品，再分发至各国水文机构 [48]。 

作为覆盖美国的“水循环数字孪生体”，NWM的意 

义在于支撑政府与科研机构可实时提取任意坐标的模 

拟流量等要素，为防洪调度与水资源管理提供统一数据 

底座。美国国家水模型NWM是美国国家气象局于2016 
年投入业务运行的全国水文模拟框架 [50]。该系统依托 

美国国家大气研究中心（National Center for Atmospheric 
Research，U. S.，NCAR）开发的WRF Hydro引擎，在约 

1  k m 网 格 及 局 部 更 高 精 度 的 河 网 上 ， 对 美 国 本 土  

约 270 万条河段（总长约 520 万千米）开展连续水文—水 

动力耦合模拟 [50，51]。NWM整合大气、陆面与水文过 

程：一方面接收NOAA各类数值天气预报实现对未来降 

雨的滚动驱动 [50]；另一方面，陆面水文模块采用Noah 
MP模型模拟降雨入渗、土壤水分与蒸散发，并将产流— 
汇流过程离散至小流域单元中计算 [45]。随后，河网汇 

流模块在全国节点上完成径流传输，形成跨流域连通的 

水流演进模拟。 
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CFS由水利部水利信息中心牵头研发，旨在在多河 

流、多气候格局的背景下，构建统一、高效的国家级洪水 

预警业务平台。系统依托规范化数据库与模块化模型 

库，可快速搭建流域—潮位站多级预报方案 [52]。内置模 

型涵盖蓄满产流、河北雨洪模型、三水源新安江模型，以 

及河道演算的马斯京根与滞后演算等 [52，53]，并可与水利 

工程调度模块耦合，模拟水库群联合运用对下游洪峰和 

水位过程的调控效应 [54，55]。目前，CFS已具备全国洪水 

滚动预报等核心能力，为快速防洪调度提供了技术支撑。 

然而，与美国NWM相比，系统仍存在三方面不足：一是模 

型框架仍以“新安江加马斯京根”串联为主，缺乏类似 

WRF Hydro的端到端分布式耦合体系；二是多源遥感与 

集合定量降水预报同化深度有限；三是人工智能尚未与 

物理模型深度融合，难以在无资料流域或极端情景下发 

挥大模型推理优势。面向未来，随着分布式可微建模、遥 

感同化与AI驱动校准技术的引入，CFS有望进一步提升物 

理一致性与泛化能力，实现真正意义上的数字孪生流域。 

2.3 洪水风险识别及应对 

全球气候变化与人类活动驱动下，极端降水事件频 

次显著增多、强度不断增强，洪水灾害日益呈现区域性 

放大、局地性突发和灾害链复合等特征。传统以概率为 

基础的灾害防御理念正面临严重挑战，单一工程体系难 

以应对多维度风险，洪水防控也相应地从静态设防逐步 

迈向动态韧性调控，系统性风险分析与协同防控机制日 

益成为研究热点（图3）。 

洪水灾害的风险识别是防控体系建设的基础。洪 

涝风险形成于致灾因子、孕灾环境与承灾体之间的复杂 

交互作用，其核心要素包括致灾因子的危险性、承灾体 

的暴露度与脆弱性，以及区域防灾减灾能力的强弱 [56]。 

以城市地区为例，气候变暖背景下强降水加剧，同时城 

市不透水面增加、排水系统与天然水系连接不畅，极易 

诱发“城市内涝”灾害链 [57]。在此背景下，基于遥感、地 

理信息系统和社会统计数据的多源融合风险识别方法 

快速发展，具备广域覆盖和实时响应能力。例如，Fang 
等 [58]基于耦合机理模型（HEC-HMS/RAS）与机器学习 

（随机森林），开发了一种混合方法，可有效评估和预测 

洪水易发性。Akay等 [59]将信息融合范式与决策树算法 

相结合，显著提高了洪水易感性地图的精度和可靠性。 

Boudou等 [60]结合高分辨率城市下垫面信息绘制了针对 

贝桑帕拉松和莫伊萨克的两次典型洪水事件承灾体脆 

弱性地图，并对比了其相比法国历史176次大洪水事件 

的强度，为未来洪水风险提供决策支撑。 

洪涝风险分析的研究方法不断发展。从传统的灾 

情统计分析与指标体系法，逐步拓展至耦合遥感与GIS、 

情景模拟与机器学习等多样化路径 [61]。表1展示了不 

同方法的基本原理、步骤和优缺点。指标体系法以其通 

用性广受应用，但主观性强、难以刻画淹没演化过程；情 

景模拟法依托分布式水文—水动力模型（如HEC-RAS、 

LISFLOOD和Cama-flood等），在集成气象、下垫面与工 

程调控边界的基础上，能够重建复杂洪水演进过程并推 

演未来洪水的风险变化趋势 [62，63]。在高排放情景下， 

哥本哈根未来风暴潮洪灾风险将上升达两个数量级，而 

实施暴雨洪涝适应性计划可显著降低未来洪涝风险，表 

明科学评估在政策落地中的关键价值 [64]。在风险驱动 

下，洪水预报方法也向“风险导向型”转变，强调预报产 

品的不确定性定量表达与风险指标耦合应用。与确定 

图3 洪水风险识别及应对体系 
Fig.3 Framework for Flood Risk Assessment and Response  
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性洪水过程预报相比，当前研究强化了概率预报、集合 

预报和预报结果对灾害影响的情景解释能力。例如，欧 

洲EFAS、美国NWM等洪水预警云平台实现了集合预 

报、风险区划、影响范围、关键基础设施暴露关系的集 

成 [65]。我国CFS也已初步实现基于洪水模拟结果的风 

险等级识别与应急推演功能，为应对突发性暴雨洪灾提 

供重要支撑 [53]。随着数字孪生技术及其底图信息的丰 

富，风险评估已实现从以往的具有重现期标准的等级静 

态风险评估向实时动态风险评估的转变，强化了风险防 

控和决策的针对性、有效性和科学性。 

洪水风险防控的重点，正从传统“设防型”基础设施 

体系，向“适应型”“韧性型”综合体系转型。变化环境下 

水利工程适应性设计正成为提升系统抗灾能力的关键。 

适应性设计不仅包括对传统设计参数中气候极值的再评 

估，还需综合考虑流域尺度多系统（如水文、水资源、生 

态、社会等）的耦合相互作用，以及工程运行在长期环境 

演变过程中的适应能力与韧性表现。近年来，工程设施 

与气象、水文、社会数据的智能耦合系统不断推进，涌现 

出一系列“工程+信息”融合的新型防控路径。例如，水利 

部推进的“数字孪生流域”“数字孪生水网”等工程建设， 

是通过加强全流域或全水网的“空、天、地、水工”立体式 

全覆盖要素的监控，提升流域和水网的安全和防洪韧性。 

防灾韧性的提升还需依托区域尺度的风险治理机 

制。洪灾具有跨区域级联传导特性，单一部门或行政区 

域难以有效应对，因此多主体协同治理成为关键。以国 

土空间韧性规划为核心的新型风险防控路径，强调灾前 

风险识别、灾中协同响应与灾后功能恢复的系统集成。 

在空间治理层面，实践中逐步构建以“多维评价”为基础 

的风险分区体系，强化对高风险区的用途控制和对具备 

恢复潜力的区域的引导调节 [66]。同时，各地正探索将多 

灾种防控策略纳入空间结构优化与资源配置调整，实现 

“减灾优先—空间约束—适应调节”的多尺度协同治理路 

径，推动灾害防控从“物理设防”向“系统防御”转变。未 

来，洪水风险识别与防控将持续向系统性、智能化和协同 

化发展。研究亟需强化风险建模与评估的不确定性表 

达，建立基于物理—社会耦合机制的综合风险评估框架； 

推进数字孪生流域与智能调度平台建设，实现洪灾信息、 

预报、响应的联动化应用；同时强化水利工程体系在极端 

条件下的结构适应性与功能韧性，推进由“设防理念”向 

“适应调控”转变，夯实国家防洪安全基础。 

3 研究展望与建议 

在气候变暖、城市化和流域生态系统变化多重影响 

的背景下，未来洪水预报研究应从“要素模拟”向“系统 

防御”拓展，构建融合机理认知、智能预测与韧性防控的 

整体框架。重点攻克三方面关键科学问题，开展四个方 

面的研究。 

3.1 关键科学问题 

变化环境下洪水预报不仅面临传统水文气象耦合过 

程的复杂性，更叠加了非线性驱动、多系统耦合及复合灾 

害链响应等多重挑战。聚焦洪灾系统性风险管理和极端 

事件预报能力提升，当前亟需突破三个核心科学问题。 

（1）极端洪水形成机理与演变规律：在气候变化和人类活 

动影响下，极端气候事件驱动下的洪水频发、强度增大， 

表1 洪水风险分析方法对比 
Table 1 Comparison of Flood Risk Analysis Methods 

方法 原理 步骤 优点 缺点 

历史灾情数理统计 基于历史洪水灾情，掌握 
不同频率洪水与损失的 
数理统计规律 

（1）搜集历史灾情数据 
（2）构建合适的洪水— 
损失风险评估模型或公式 
（3）全面评估历史洪水风险 

无需详细地理数据、 
计算简单 

历史灾情数据需求高； 
无法反映洪涝风险空间 
特征；具有一定的时间 
滞后性 

指标体系法 全面考虑洪水风险因素， 
构建洪水风险指标评估 
体系 

（1）确定洪水风险评估指标 
体系和方法 
（2）计算各指标权重大小 
（3）对洪水风险进行综合评估 

数据易搜集处理、 
计算简单；适用于不同 
空间尺度 

指标选取及权重计算 
主观性强；对于数据空间 
分辨率要求高 

RS和GIS耦合法 基于遥感提取信息数据 
并结合GIS绘制洪水 
风险图 

（1）根据遥感信息识别洪水 
淹没范围及承灾体等信息 
（2）利用GIS分析洪水风险 
空间分布规律 

数据易获取 时间分辨率差、仅能捕捉 
空间尺度较大的洪水； 
对下垫面信息要求较高 

情景模拟法 设置不同自然、社会情景 
模拟洪水灾害风险的 
时空演变形势 

（1）构建水文水动力学模型 
（2）设置不同的气候条件、 
洪涝灾害强度与社会情景等 
（3）模拟不同情景下的洪水 
过程并绘制洪涝风险图 

结果直观、时空精度 
较高；可反映洪水过程； 
可动态评估洪水风险 

大尺度区域建模难度大； 
对水文、气象及下垫面 
资料要求较高；易忽视 
孕灾环境的影响   
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其形成机理和演变规律尚不清晰。尤其是极端气候对流 

域水文循环的驱动机制与阈值响应缺乏定量认知，多尺 

度气象—水文—下垫面过程的耦合关系尚待深入解析。 

（2）极端洪涝灾害响应与系统性风险分析理论：极端洪涝 

灾害的风险受生态系统脆弱性、社会结构复杂性与工程 

设施调控能力等多重因素影响，呈现跨区域、跨尺度的系 

统性特征。现有研究缺乏“自然—社会—工程”系统耦合 

视角下的风险传递理论与联动机制模型，亟需揭示风险 

在多要素间的输送、级联放大与跨界扩散规律，构建系统 

化的分析框架与交互模型。（3）极端洪涝灾害系统性风 

险防控机制：在极端气候事件频发背景下，洪涝灾害呈现 

级联扩散和系统性风险特征，现有防控体系多侧重工程 

措施与事后应急，缺乏面向系统性风险的预警级联机制 

与动态韧性调节手段，难以支撑灾害快速蔓延下的高效 

应对。迫切需要构建融合工程、生态与社会治理的综合 

防控机制，完善前置预警、分级响应和韧性调控体系。 

3.2 重点研究方向 

针对三个关键科学问题，需要开展“成因机理—智 

能预测—风险响应”全链条研究，支撑水利工程防洪韧 

性提升与适应性设计。 

（1）变化环境下极端洪涝形成机理与演变规律。变 

化环境下极端洪涝形成与演变机理更加复杂，需进一步 

聚焦极端洪水的综合成因与过程机理。针对全球变暖 

背景下降水强度、持续时间与极端性变化进行系统分 

析，量化ENSO、IOD、季风异常、台风路径及西风急流摆 

动等对极端降水的触发作用与叠加效应，评估城镇化、 

土地覆被变化、工程调蓄及水资源调控对产流条件的重 

塑，探讨暴雨与汇流过程间的非线性关系与放大效应。 

将流域生态扰动纳入洪水成因分析，研究植被破坏、土 

壤结构变化与生态系统退化削弱蓄滞的功能，开展突发 

性、链式性洪水事件的演化模式与临界阈值研究，揭示 

由多因素共同驱动的“从强降水到高强度洪灾”的形成 

机理与驱动机制，探索“旱涝急转”或“涝旱急转”环流的 

异常背景和触发机制。 

（2）极端洪涝灾害智能模拟与预测。未来洪水预报 

研究的核心在于构建物理—智能深度耦合的统一框架： 

一方面，将流域能量与质量守恒方程作为“硬约束”嵌入 

深度学习网络，以提升模型在跨流域迁移与极端事件外 

推中的可靠性与可解释性；另一方面，以VIC、SWAT（Soil 
and Water Assessment Tool）等成熟机理模型为骨架，研发 

面向高分辨率资料的AI参数化与不确定性分解方案，实 

现观测误差、结构误差与参数误差的综合评估和协同平 

差。为支撑深度学习对极端样本的需求，应通过事件标 

注与阈值自动识别，建立多时空尺度的洪旱灾害标签数 

据库，联合盘古、伏羲等AI气象大模型的高时空预报场， 

搭建“大气—水文”端到端智能预测链。在物理一致性、 

数据高频更新、场景泛化能力三维度同步突破，解决现有 

模型超出样本分布情景时风险可靠性低的短板，实现对 

极端洪涝灾害的精准预警与韧性决策支撑。 

（3）构建系统性风险动态识别与响应框架。深化洪 

水风险链式传播建模，构建从洪水触发、扩散到次生灾害 

形成的完整链条分析，揭示洪水在不同空间、时间和系统 

要素中的风险传导与转化机制。通过耦合社会暴露度 

（人口密度及财产、产业布局、关键设施分布）、工程脆弱 

性（堤坝、水库、排涝设施等的设计能力及失效模式）与空 

间分布特征（微地形、土地利用、城镇化），实现多要素协 

同驱动的场景化风险模拟。结合多源观测数据进行洪 

水模拟预测与灾害仿真分析，开发能够随洪水态势演变 

实时更新的风险动态评估技术，为应对不同类型洪水（如 

特大暴雨、台风暴潮、城市内涝）提供实时动态风险图。 

引入集合预测与不确定性分析技术，量化多模型、输入数 

据及场景设定带来的不确定性，形成带有概率预报的风 

险预估结果，提升洪水应急响应和资源调度的时效性与 

精准性，为政府决策和流域防洪韧性提升提供科学依据。 

（4）加强水利工程适应性设计与韧性构建研究。面 

向愈发频繁和强烈的极端洪涝事件，探索水利工程的适 

应性设计理论与方法。研究极端降雨、洪旱急转等条件 

下的水文边界不确定性和极值特征，提出可适应多情 

景、多尺度的设计标准与评估体系。强化工程在面对极 

端条件、复合灾害与系统耦合压力时的稳定性与可恢复 

性，推动水利设施由传统“设防型”向具备动态适应能力 

和自我恢复能力的“适应型”“韧性型”工程转型，为未来 

基础设施建设提供理论指导与技术路径。针对洪旱灾 

害引发的粮食、生态、能源、社会安全等系统性风险，构 

建集风险预报、智能调度与应急响应于一体的防控平 

台。研究洪涝灾害风险链传导和关键节点控制策略，结 

合人工智能方法（机器学习、强化学习、智能优化等）实 

现工程动态运行调度。通过“工程+信息”的融合创新， 

形成可进化、可学习、可迭代的水利工程韧性重构方法， 

支撑极端气候背景下的防洪安全保障与协同管理。 

参 考 文 献   

[1] 丁一汇，张建云. 暴雨洪涝. 北京：气象出版社，2009.  

Ding YH，Zhang JY. Storm and Flood. Beijing：China Meteorological 

Press，2009. （in Chinese）   

[2] 张建云，宋晓猛，王国庆，等. 变化环境下城市水文学的发展与挑战 

—I. 城市水文效应. 水科学进展，2014，25（4）：594—605.  

Zhang JY，Song XM，Wang GQ，et al. Development and challenge of 

urban hydrology in changing environment I：Urban hydrological effect. 

982 中 国 科 学 基 金  2025 年  



Advances in Water Science，2014，25（4）：594—605. （in Chinese）   

[3] 张建云，王银堂，贺瑞敏，等. 中国城市洪涝问题及成因分析. 水科学 

进展，2016，27（4）：485—491.  

Zhang JY，Wang YT，He RM，et al. Urban flooding and its causes in 

China. Advances in Water Science，2016，27（4）：485—491. （in 

Chinese）   

[4] IPCC. Climate Change 2022：Impacts，Adaptation and Vulnerability. 

Contribution of Working Group II to the Sixth Assessment Report of 

the Intergovernmental Panel on Climate Change. Cambridge：Cam

bridge University Press，2022.   

[5] IPCC. Climate Change 2021：The Physical Science Basis. Contribution 

of Working Group I to the Sixth Assessment Report of the 

Intergovernmental Panel on Climate Change. Cambridge：Cambridge 

University Press，2021.   

[6] Kundzewicz ZW，Kanae S，Seneviratne SI，et al. Flood risk and climate 

change：Global and regional perspectives. Hydrological Sciences 

Journal，2014，59（1）：1—28.   

[7] 张建云，宋晓猛，贺瑞敏. 新时期大型城市洪涝灾害防控及思考. 中 

国水利，2025（17）：15—21.  

Zhang JY，Song XM，He RM. Thoughts on urban flood disaster 

prevention and control in large cities in the new era. China Water 

Resources，2025（17）：15—21. （in Chinese）   

[8] 徐金霞，郭海燕，邓国卫，等. 山洪灾害临界雨量确定方法对比研究 

—以雅安名山河流域为例. 自然灾害学报，2024，33（3）：123—132.  

Xu JX，Guo HY，Deng GW，et al. Comparative study on determination 

methods of critical rainfall for flash flood disasters：A case study of 

Mingshan River Basin in Ya’an. Journal of Natural Disasters，2024，33 

（3）：123—132. （in Chinese）   

[9] 程晓陶，刘昌军，李昌志，等. 变化环境下洪涝风险演变特征与城市 

韧性提升策略. 水利学报，2022，53（7）：757—769.  

Cheng XT，Liu CJ，Li CZ，et al. Evolution characteristics of flood risk 

under changing environment and strategies for enhancing urban 

resilience. Journal of Hydraulic Engineering，2022，53（7）：757—769. 

（in Chinese）  

[10] Huang Y，Chen H，Liu BY，et al. Radar technology for river flow 

monitoring：Assessment of the current status and future challenges. 

Water，2023，15（10）：1904.  

[11] Muste M，Fujita I，Hauet A. Large-scale particle image velocimetry for 

measurements in riverine environments. Water Resources Research， 

2008，44（4）：2008WR006950.  

[12] Morrow R，Fu LL，Ardhuin F，et al. Global observations of fine-scale 

ocean surface topography with the surface water and ocean topography 

（SWOT） mission. Frontiers in Marine Science，2019，6：232.  

[13] Xu QC，Li L，Wei ZW，et al. A multimodal machine learning fused 

global 0.1° daily evapotranspiration dataset from 1950-2022. Agricul

tural and Forest Meteorology，2025，372：110645.  

[14] Liu BR，He XG，Lyu WK，et al. Physics-augmented deep learning 

models for improving evapotranspiration estimation in global land 

regions. Agricultural Water Management，2025，317：109634.  

[15] Li LQ，Long D，Wang YM，et al. Global dominance of seasonality in 

shaping lake-surface-extent dynamics. Nature，2025，642（8067）：361 

—368.  

[16] Zhu LJ，Dai JJ，Liu Y，et al. A cross-resolution transfer learning 

approach for soil moisture retrieval from Sentinel-1 using limited 

training samples. Remote Sensing of Environment，2024，301：113944. 

[17] Wu H，Kimball JS，Zhou NJ，et al. Evaluation of real-time global flood 

modeling with satellite surface inundation observations from SMAP. 

Remote Sensing of Environment，2019，233：111360.  

[18] Li ZM，Chen B，Huang YF，et al. Enhanced mapping of essential urban 

land use categories in China （EULUC-China 2.0）：Integrating multi

modal deep learning with multisource geospatial data. Science 

Bulletin，2025，70（18）：3029—3041.  

[19] Cheng K，Chen YL，Xiang TY，et al. A 2020 forest age map for China 

with 30 m resolution. Earth System Science Data，2024，16（2）：803— 
819.  

[20] Wang M，Mao DH，Wang YQ，et al. Wetland mapping in East Asia by 

two-stage object-based Random Forest and hierarchical decision tree 

algorithms on Sentinel-1/2 images. Remote Sensing of Environment， 

2023，297：113793.  

[21] Blöschl G，Bierkens M，Chambel A，et al. Twenty-three unsolved 

problems in hydrology （UPH）–a community perspective. Hydrological 

Sciences Journal，2021，64：1141—1158.  

[22] Leijnse H，Uijlenhoet R，Stricker JNM. Rainfall measurement using 

radio links from cellular communication networks. Water Resources 

Research，2007，43（3）：2006WR005631.  

[23] Yao YB，Shan LL，Zhao QZ. Establishing a method of short-term 

rainfall forecasting based on GNSS-derived PWV and its application. 

Scientific Reports，2017，7（1）：12465.  

[24] 张哲，戚友存，朱自伟，等. 深圳S波段与X波段双偏振雷达在定量降 

水估计中的应用. 气象学报，2021，79（5）：786—803.  

Zhang Z，Qi YC，Zhu ZW，et al. Application of Shenzhen S-band and 

X-band dual-polarization radars in quantitative precipitation estimation. 

Acta Meteorologica Sinica，2021，79（5）：786—803. （in Chinese）  

[25] 袁梅，尹红刚，商建，等. FY-3G降水测量雷达海洋定标精度检验与评 

估. 应用气象学报，2024，35（5）：526—537.  

Yuan M，Yin HG，Shang J，et al. Validation and evaluation of ocean 

calibration accuracy of FY-3G precipitation measurement radar. Journal 

of Applied Meteorological Science，2024，35（5）：526—537. （in Chi

nese）  

[26] Wu HC，Yang QL，Liu JM，et al. A spatiotemporal deep fusion model 

for merging satellite and gauge precipitation in China. Journal of 

Hydrology，2020，584：124664.  

[27] Rinehart RE，Garvey ET. Three-dimensional storm motion detection by 

conventional weather radar. Nature，1978，273（5659）：287—289.  

[28] 郑志卿，张克非，师嘉奇，等. 中国不同气候区域GNSS水汽探测精度 

及时序特征分析. 测绘科学，2023，48（10）：68—77.  

Zheng ZQ，Zhang KF，Shi JQ，et al. Analysis of GNSS water vapor 

detection accuracy and time series characteristics in different climate 

regions of China. Science of Surveying and Mapping，2023，48（10）：68 

—77. （in Chinese）  

[29] Liu MJ，Zhang WX，Lou YD，et al. A deep learning-based precipitation 

nowcasting model fusing GNSS-PWV and radar echo observations. 

IEEE Transactions on Geoscience and Remote Sensing，2025，63： 

4104209.  

[30] Zong PS，Bao TT，Tang JP，et al. Forecasting capability verification of 

the pangu-weather and IFS HRES for the 2022 summer weather in 

Jiangsu province，China. Weather and Forecasting，40（7）：1029—1046. 

[31] Shi X，Chen Z，Wang H，et al. Convolutional LSTM network：A 

第 39 卷 第 6 期 张建云等：变化环境下洪水预报面临的挑战与应对 983  



machine learning approach for precipitation nowcasting. Advances in 

Neural Information Processing Systems，2015，28：802—810.  

[32] Glawion L，Polz J，Kunstmann H，et al. spateGAN：Spatio-temporal 

downscaling of rainfall fields using a cGAN approach. Earth and Space 

Science，2023，10（10）：e2023EA002906.  

[33] Bi KF，Xie LX，Zhang HH，et al. Accurate medium-range global 

weather forecasting with 3D neural networks. Nature，2023，619 

（7970）：533—538.  

[34] Zhao RJ. The xinanjiang model applied in China. Journal of 

Hydrology，1992，135（1/2/3/4）：371—381.  

[35] Seibert J，Bergström S. A retrospective on hydrological catchment 

modelling based on half a century with the HBV model. Hydrology and 

Earth System Sciences，2022，26（5）：1371—1388.  

[36] Devia GK，Ganasri BP，Dwarakish GS. A review on hydrological 

models. Aquatic Procedia，2015，4：1001—1007.  

[37] Liang X，Lettenmaier DP，Wood EF，et al. A simple hydrologically 

based model of land surface water and energy fluxes for general 

circulation models. Journal of Geophysical Research：Atmospheres， 

1994，99（D7）：14415—14428.  

[38] Nehls T，Kroll F. Urban flood modeling using HEC-RAS 2D：A case 

study for the city center of Karlsruhe，Germany. Journal of Hydraulic 

Engineering，2016，142（10）：04016044.  

[39] Van Der Knijff JM，Younis J，De Roo APJ. LISFLOOD：A GIS-based 

distributed model for river basin scale water balance and flood 

simulation. International Journal of Geographical Information Science， 

2010，24（2）：189—212.  

[40] Yamazaki D，Kanae S，Kim H，et al. A physically based description of 

floodplain inundation dynamics in a global river routing model. Water 

Resources Research，2011，47（4）：2010WR009726.  

[41] Rana A，Moradkhani H. Machine learning in hydrology：Review of 

current state，challenges，and future directions. Journal of Hydrology， 

2019，579：124130.  

[42] Xu TF，Liang F. Machine learning for hydrologic sciences：An 

introductory overview. WIREs Water，2021，8（5）：e1533.  

[43] Kratzert F，Klotz D，Brenner C，et al. Rainfall–runoff modelling using 

Long Short-Term Memory （LSTM） networks. Hydrology and Earth 

System Sciences，2018，22（11）：6005—6022.  

[44] Song YL，Bindas T，Shen CP，et al. High-resolution national-scale 

water modeling is enhanced by multiscale differentiable physics- 

informed machine learning. Water Resources Research，2025，61（4）： 

e2024WR038928.  

[45] Roudbari NS，Punekar SR，Patterson Z，et al. From data to action in 

flood forecasting leveraging graph neural networks and digital twin 

visualization. Scientific Reports，2024，14（1）：18571.  

[46] Kazadi A，Doss-Gollin J，Sebastian A，et al. FloodGNN-GRU：A 

spatio-temporal graph neural network for flood prediction. Environ

mental Data Science，2024，3：e21.  

[47] Nearing G，Cohen D，Dube V，et al. Global prediction of extreme 

floods in ungauged watersheds. Nature，2024，627（8004）：559—563.  

[48] Smith PJ，Pappenberger F，Wetterhall F，et al. On the operational 

implementation of the European Flood Awareness System （EFAS）// 

Adams TE，Gangodagamage C，Pagano TC，eds. Flood Forecasting：A 

Global Perspective. London：Elsevier （Academic Press），2016：313— 
348.  

[49] Thielen J，Bartholmes J，Ramos MH，et al. The European flood alert 

system–part 1：Concept and development. Hydrology and Earth System 

Sciences，2009，13（2）：125—140.  

[50] Cosgrove B，Gochis D，Flowers T，et al. NOAA’s national water 

model：Advancing operational hydrology through continental-scale 

modeling. JAWRA Journal of the American Water Resources Associa

tion，2024，60（2）：247—272.  

[51] Hughes M，Jackson DL，Unruh D，et al. Evaluation of retrospective 

national water model soil moisture and streamflow for drought- 

monitoring applications. Journal of Geophysical Research：Atmo

spheres，2024，129（6）：e2023JD038522.  

[52] 张建云. 中国水文预报技术发展的回顾与思考. 水科学进展，2010， 

21（4）：435—443.  

Zhang JY. Review and consideration of the development of hydrologic 

forecasting technology in China. Advances in Water Science，2010，21 

（4）：435—443. （in Chinese）  

[53] 章四龙. 中国洪水预报系统设计建设研究. 水文，2002（1）：32—34， 

16.  

Zhang SL. Study on design and construction of flood forecasting 

system in China. Hydrology，2002（1）：32—34，16. （in Chinese）  

[54] 赵勇，刘宁，王浩. 流域梯级水库群联合优化调度关键技术及应用. 

水利学报，2019，50（10）：1225—1234.  

Zhao Y，Liu N，Wang H. Key technologies and applications of joint 

optimal operation of cascade reservoirs in river basins. Journal of 

Hydraulic Engineering，2019，50（10）：1225—1234. （in Chinese）  

[55] 李畅游，张生，史小红，等. 潮白河流域水资源演变特征及洪水防控 

策略. 水科学进展，2022，33（3）：361—370.  

Li CY，Zhang S，Shi XH，et al. Evolution characteristics of water 

resources and flood control strategies in Chaobai River Basin. 

Advances in Water Science，2022，33（3）：361—370. （in Chinese）  

[56] 张会，李铖，程炯，等. 基于“H-E-V”框架的城市洪涝风险评估研究进 

展. 地理科学进展，2019，38（2）：175—190.  

Zhang H，Li C，Cheng J，et al. Research progress on urban flood risk 

assessment based on the “H-E-V” framework. Progress in Geography， 

2019，38（2）：175—190. （in Chinese）  

[57] 宋晓猛，徐楠涛，张建云，等. 中国城市洪涝问题：现状、成因与挑战. 

水科学进展，2024，35（3）：357—373.  

Song XM，Xu NT，Zhang JY，et al. Urban flooding in China：Current 

status，causes，and challenges. Advances in Water Science，2024，35 

（3）：357—373. （in Chinese）  

[58] Fang L，Huang JL，Cai JT，et al. Hybrid approach for flood suscept

ibility assessment in a flood-prone mountainous catchment in China. 

Journal of Hydrology，2022，612：128091.  

[59] Akay H. Flood susceptibility mapping using information fusion 

paradigm integrated with decision trees. Water Resources Manage

ment，2024，38（13）：5365—5383.  

[60] Boudou M，Danière B，Lang M. Assessing changes in urban flood 

vulnerability through mapping land use from historical information. 

Hydrology and Earth System Sciences，2016，20（1）：161—173.  

[61] 程晓陶，李娜，杨大文. 城市洪涝灾害风险分析与管理研究进展. 水 

科学进展，2018，29（2）：295—304.  

Cheng XT，Li N，Yang DW. Advances in risk analysis and management 

of urban flood disasters. Advances in Water Science，2018，29（2）：295 

—304. （in Chinese）  

984 中 国 科 学 基 金  2025 年  



[62] Hirabayashi Y，Mahendran R，Koirala S，et al. Global flood risk under 

climate change. Nature Climate Change，2013，3（9）：816—821.  

[63] Rogers JS，Maneta MP，Sain SR，et al. The role of climate and 

population change in global flood exposure and vulnerability. Nature 

Communications，2025，16（1）：1287.  

[64] Arnbjerg-Nielsen K，Leonardsen L，Madsen H. Evaluating adaptation 

options for urban flooding based on new high-end emission scenario 

regional climate model simulations. Climate Research，2015，64（1）：73 

—84.  

[65] Emmanuel A，Mergili M，Rieger M，et al. Recent advances in flood 

forecasting and early warning systems：A review of modelling 

techniques and emerging technologies. Earth-Science Reviews，2021， 

222：103787.  

[66] 王威，朱峻佚，费智涛，等. 国土空间韧性规划建设整体框架与发展 

路径研究. 中国工程科学，2023，25（3）：209—218.  

Wang W，Zhu JY，Fei ZT，et al. Overall framework and development 

path of territorial space resilience planning and construction. Strategic 

Study of CAE，2023，25（3）：209—218. （in Chinese）    

Challenges and Strategies for Flood Forecasting in a Changing Environment 

Jianyun Zhang1, 2, 3†* Junliang Jin1, 2, 3†* Liujun Zhu1, 2 Zhangkang Shu1, 3 Kang Xie1, 3 Ziwei Li1, 2 
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Abstract As global climate change and rapid urbanization intensify，flood disasters are becoming more extreme， 

multifaceted，and intertwined with systemic risks. Existing flood forecasting methods often fall short in addressing the 
challenges posed by extreme weather events，heterogeneous terrains，and coupled natural–human systems，thereby limiting 
their effectiveness in providing accurate early warnings and resilient disaster mitigation. This paper presents a 
comprehensive review of recent progress in key areas of flood forecasting，including multi-source data integration， 

precipitation prediction，hydrological modeling，and resilience-focused control strategies. Building on these insights，the 
study proposes a shift from element-based simulation toward integrated system-oriented governance. It underscores the 
importance of integrating environmental sensing technologies with hybrid physical–intelligent models，developing scenario- 
based risk identification and response mechanisms，and designing adaptive，resilience-driven water infrastructure. The paper 
also calls for deeper insights into the mechanisms behind extreme flood events in evolving environments，enhanced 
forecasting across spatial and temporal scales，improved modeling of cascading disaster risks，and the advancement of 
integrated “engineering plus information” disaster prevention systems. These recommendations aim to support more 
accurate flood prediction，coordinated multi-scale flood management，and the protection of national water security. 

Keywords flood forecasting；extreme climate events；risk prevention and control；resilient infrastructure；adaptive 
engineering design  
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