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Fig.1 Examples of Potential Causal Relationships among Major
Natural Disasters
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Fig.2 Theoretical System of Natural Disaster Assessment
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Fig.3 Schematic Diagram of the New Generation Natural Disaster Assessment Technology System
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Abstract Against the backdrop of escalating compound and cascading natural disaster risks worldwide and the profound
transformation of national governance systems,constructing a new generation collaborative natural disaster assessment
framework with dynamic responsiveness and system integration capabilities has become a core scientific and technological
mission to balance development and security. Existing systems face structural constraints in multi-hazard coupled
modeling,dynamic adaptability,and data-decision collaboration. This study systematically reviews the theoretical
foundations, technological pathways,and institutional frameworks of current disaster assessment systems,identifies their
major challenges,and proposes an integrated construction route along the three dimensions of theory-technology-national
framework. At the theoretical level , the framework emphasizes reconstructing the temporal coupling mechanism of hazard,
exposure,and vulnerability ;building a comprehensive database of multi-hazard interaction parameters and causal
relationships (covering triggering,conditioning,and cascading effects);and establishing a dynamic model for the
evolution of disaster chains. These elements jointly reveal the intrinsic coupling mechanisms of compound hazard processes
and lay the foundation for dynamic and quantitative risk cognition. At the technological level ,the framework advocates the
development of an integrated assessment system covering all hazards,all chains,all dimensions,and all processes. It

advances the deep fusion of physical and artificial intelligence models to create high-precision, high-efficiency modeling

engines and promotes a paradigm shift in risk representation from categorical classification to probabilistic
quantification. This enables risk assessment to evolve from static and single-hazard evaluations toward dynamic,
intelligent,and scenario-driven modeling. At the national framework level,the study highlights the importance of
institutional and legal mechanisms for cross-sector collaboration. It proposes establishing a unified national database
covering all hazards and disaster chains, standardizing multi-hazard assessment methods and indicators, and building a legal

and governance framework that integrates assessment with planning and emergency response. The “assessment-planning-
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emergency” linkage mechanism ensures that assessment results can effectively inform spatial planning, engineering design,
and emergency decision-making. Overall,this theoretical ,technological ,and institutional framework provides a systemic
integration pathway for modern disaster risk governance. By achieving quantifiable risk expression,traceable decision
processes,and assessable governance effectiveness,it advances the modernization of national disaster prevention and
mitigation capabilities and contributes to the implementation of a comprehensive,resilience-oriented national security

strategy.

Keywords integrated natural hazard assessment system;compound and cascading disasters;multi-hazard coupled

modeling ; dynamic risk representation ;intelligent assessment;national security and governance framework
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