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[摘 要] 构建高效的自然灾害预警体系被认为是提升气候变化适应能力的核心手段，也是一种减少人 

员伤亡和经济损失的有效手段。然而，当前自然灾害预警理论、技术和体系等方面仍面临着巨大挑战。 

因此，本文系统梳理自然灾害预警面临的科学挑战和技术瓶颈，提出了自然灾害预警体系总体架构，从自 

然灾害预警的理论体系、技术体系和国家体系三个方面详细阐述了我国自然灾害预警体系构建的路径和 

重点领域方向，并对人工智能、数字孪生、大数据等新兴技术方法如何促进预警能力提升进行有益的探 

讨。 
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1 自然灾害预警的重要性 

1.1 自然灾害预警是全球重大需求 

随着全球气候变化、地震和人类活动的加剧，全球 

自然灾害频率和量级显著增加，进一步导致人员伤亡和 

财产损失均呈现显著上升趋势，使得自然灾害的防灾减 

灾工作成为全球关注的热点问题 [1，2]。联合国防灾减灾 

署发布的《2000—2019年灾害造成的人类损失》报告 

显示 [3]，1980—1999年，全球有4 212起与自然灾害相关 

的重大灾害。而2000—2019年，全球共发生7 348起重大 

灾害 [4]，数量明显增多。慕尼黑再保险公司《2024年自 

然灾害损失记录报告》指出，由地震、洪水、飓风等灾害 

造成的年均经济损失已突破3 000亿美元，影响数亿人口 

的生产生活。2024—2025年，西班牙、美国等发达国家 

都发生了严重的洪水灾害，分别造成224人和139人死 

亡，经济损失惨重。2025年3月，美国洛杉矶地区发生严 

重森林大火，造成的经济损失高达2 500亿美元。由此可 

见，自然灾害呈现出不断加剧的趋势，并给全球人民生 

命财产安全带来了严重的威胁。 

我国独特的地质构造、气候特征以及人口分布等多 

重因素交织叠加，使我国成为全球自然灾害风险最高的 

国家之一 [5]。灾害种类多、分布地域广、发生频率高、造 

成损失重是我国的一个基本国情，自然灾害导致的经济 

损失和人员伤亡始终保持在较高水平。因此，自然灾害 

的有效防控是我国新时代安全保障能力提升的关键要 

素，是国家安全体系与能力现代化建设的重要组成部 

分，事关更高水平“平安中国”“美丽中国”建设目标的 

实现。 

在所有风险减灾和气候应对措施中，预警是减少人 

员伤亡和经济损失的最有效和最经济的手段。全球适 

应委员会评估显示，每投入1美元用于早期预警可减少9 
美元损失。世界气象组织数据显示，完善的早期预警系 

统能将灾害导致的人员死亡率降低60%以上，提前24小 
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时发布的预警信息可减少30%的经济损失。2015年，联 

合国通过的《仙台减灾框架（2015—2030）》明确将预 

警系统列为降低灾害风险的四大优先事项之一，强调其 

对于挽救生命、减少经济损失的核心价值。该框架要求 

成员国通过技术创新、跨部门协作和国际合作，到2030 
年实现多灾种早期预警覆盖率翻倍的目标。2022年，联 

合国秘书长古特雷斯发起了“全民早期预警”（Early 
Warning to All）倡议，旨在确保到2027年底，全球所有人 

都能享有早期气象预警系统的保护，免受极端天气、水 

或气候灾害事件的影响。当前，在全球变暖背景下，自 

然灾害的影响范围不再局限于局部地区，而是通过全球 

化的经济、社会和生态系统链条迅速扩散，需要全球共 

同应对。因此，自然灾害预警是全球重大需求。 

1.2 自然灾害预警是国际学术前沿 

自然灾害预警作为防灾减灾的核心环节，其过程涉 

及自然系统、技术体系与社会响应的多重互动，需要从 

理论研究、技术攻关和国际合作等多角度厘清灾害特 

性，突破技术瓶颈，克服社会因素等多重挑战，是当前国 

际学术前沿科学问题。2021年，Science再次提出125个 

科学难题，其中“我们能否更准确地预测灾害性事件，如 

海啸、飓风和地震”被列为至今仍未得到有效解决的科 

学难题，凸显出自然灾害预警是全球具有挑战性的前沿 

学术问题。 

自然灾害的发生源于地球表层系统的复杂动力学 

过程，其预警需要有效考虑多因素耦合和不确定性。自 

然灾害预警的精准性与有效性，在很大程度上取决于对 

多因素耦合作用的认知深度与整合能力。地球表层系 

统的大气圈、水圈、岩石圈、生物圈等圈层间的动态交 

互，叠加人类活动的持续干预，形成了复杂的“自然—人 

文”耦合系统，任何单一因素的预警视角都难以捕捉灾 

害的完整演化链条。另一方面，灾害发生的不确定性也 

是预警面临的难题。数据不完整性是不确定性存在的 

首要因素，地球表层系统的观测网络存在显著空间不 

均，海洋、极地和山区等区域的观测密度不足，导致关键 

数据缺失。其次，为降低计算复杂度，现有预警模型往 

往对复杂自然过程进行简化，模型构建的简化假设也会 

引入不确定性。 

气候变化进一步放大了灾害预警的难度。气候变 

化导致极端天气事件，如热浪、洪水、暴雨、飓风和干旱， 

正在对人类社会、经济和生态系统产生深远影响。同 

时，极端天气也会进一步诱发地质灾害、洪涝等自然灾 

害在强度、频率、持续时间、触发时间与位置、规模或影 

响范围等方面变化，导致自然灾害风险显著增加，尤其 

是那些地处海平面以下、地质条件较差的高寒地区更容 

易受到灾害的侵袭。因此，如何让预警模型和系统能够 

有效地适应自然灾害的复杂性、不确定性和动态变化是 

本领域的前沿热点问题。 

2 自然灾害预警的科学挑战和技术瓶颈 

2.1 科学挑战 

（1）对自然灾害形成演化机制的认识不足限制了预 

警的可靠性。自然灾害是地球系统各圈层相互作用的 

结果，无论是地震、台风、暴雨还是地质灾害，都是多因 

素、非线性叠加的产物。灾害事件的发生机制极其复 

杂，一些巨灾的发生超出传统经验与现有认知框架，无 

法通过历史数据或现有模型提前预判（俗称“黑天鹅”事 

件）。另有一些灾害已被察觉、出现概率较高、影响重 

大，但因忽视或拖延应对而最终发生（俗称“灰犀牛”事 

件）。除此以外，自然灾害往往以多灾种同时发生和链 

式发生存在，多灾种复合叠加和灾害链演化进一步增加 

了灾害的复杂性。例如，地震—海啸的叠加增强了灾害 

的致灾能力。当前科学界对部分灾害的内在机理已经 

有了较深认识，并且取得了一系列成果。例如，对于滑 

坡灾害的超远距离流动性机理提出了摩擦弱化机制、孔 

隙水压机制等；对于泥石流提出了龙头铺床增强流动性 

机制等。然而自然灾害涉及的种类多，往往具有跨尺 

度、多灾种链式发生的特点，属于典型的复杂系统。现 

有经典单灾种理论，缺乏对多灾种耦合机制和链生致灾 

机制的探讨，难以完全适用于复杂灾害系统，亟需进一 

步研究自然灾害形成演化机制以增强自然灾害预警的 

可信度。 

（2）预警理论与方法难以支撑精准预警的要求。目 

前，自然灾害预警理论和方法方面得到了大量的研究， 

发展了基于简单的物理假设和经验公式的模型、基于数 

值模拟的预警模型和基于人工智能的预警模型等。然 

而，上述模型大多具有一定的局限性，无法完全解析灾 

害全过程，导致预警的精准性、时效性依然存在挑战。 

由于缺少机理的支持，传统基于经验公式的模型大多难 

以模拟复杂的灾害形成和发展过程。除此以外，传统预 

警模型多为静态模型，参数一旦确定后很少调整，无法 

适应自然灾害发生过程中的动态变化。而基于数值模 

拟的预警模型虽在一定程度上弥补了经验模型的缺陷， 

但是数值模型依旧面临着初值敏感性与确定性预报的 

困境、参数化方案的经验性误差以及分辨率鸿沟与关键 

结构缺失等。例如，在台风灾害的预警过程中，全球气 

候模式的分辨率通常≥10千米，但许多关键灾害结构尺 

度更小，如台风眼墙（直径<5千米）、中尺度对流系统 

（Mesoscale Convective System，MCS）等，这要求模型分 
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辨率至少需要达到其特征尺度的一半。然而，当前理论 

框架下的模型无法在可接受的算力成本下解析这些精 

细结构，导致对台风强度、暴雨中心落区的预警能力不 

足。近年来，深度学习等智能算法在自然灾害预警中得 

到大量应用，但其理论基础也带来了新的挑战。受限于 

人工智能算法由数据驱动的特性，目前的模型大多存在 

对历史数据的依赖、极端事件预测的“盲区”、物理一致 

性的难题、可解释性缺失等问题。例如，在泥石流灾害 

的预警过程中，如果训练数据中缺失百年一遇泥石流的 

记录，即使大气降水条件满足，人工智能模型也可能严 

重低估泥石流灾害的强度，导致无法有效预警。另一方 

面，人工智能模型的“黑箱”特性使其决策过程难以被理 

解。这导致科研人员和决策者难以洞悉模型做出某项 

预测的内在逻辑，降低了其对预报结果的信任，尤其在 

需要发布高风险预警时。由此可见，虽然目前预警理论 

与方法得到了大量研究，但是如何构建一个可以表征复 

杂灾害性的预警理论框架依然是一个重要的科学挑战。 

2.2 技术瓶颈 

（1）监测网络和数据质量覆盖范围仍极其有限，限 

制了预警的精准度（表1）。我国监测站点分布存在明显 

的区域不平衡。东部地区监测密度较高，而西部地区， 

特别是地形复杂的山区和农村地区，监测站点相对稀 

疏，甚至存在空白区。例如，中高山带的暴雨监测存在 

盲区，而大部分山洪泥石流灾害伤亡正源于此。此外， 

现有监测手段在时空精度和实时性方面仍有不足，难以 

完全捕捉突发性、小尺度灾害的细微前兆。近年来，随 

着空—天—地—内等各种监测技术手段的发展，当前自 

然灾害监测的范围和广度都得到了极大的提升。然而， 

在海洋、偏远山区和发展中国家，监测仪器设备的覆盖 

面仍然难以有效地支撑精细化预警。 

（2）数据共享机制的不健全进一步制约了预警功能 

的发挥（表1）。自然灾害预警需要多源数据（气象、水 

文、地质、遥感等）的融合分析。然而，这些数据通常分 

散在不同的部门和机构（如气象局、水利局、自然资源 

局、应急管理局等），各部门间缺乏有效的数据整合和共 

享机制，形成“数据孤岛”。这不仅指物理上的分散，更 

意味着组织壁垒和行政隔离，使得数据无法在需要时顺 

畅流动和高效协同。此外，不同部门在数据采集、存储 

和处理过程中采用的技术标准、数据格式和系统接口往 

往不一致。例如，气象数据可能有其特定的格式和传输 

协议，而地质监测数据则可能采用另一套标准。另一方 

面，由于数据分散在不同部门，缺乏统一的质控标准和 

流程，可能使得数据不一致、不准确，导致数据质量参差 

不齐和完整性不足的问题。 

（3）风险预警管理的滞后影响了预警成效（表1）。 

当前自然灾害预警由于理论和技术的不足，仍然受困于 

误报率和漏报率较高的问题。一是“狼来了”太多，导致 

民众对有效预警放松警惕，二是不时发生的漏报又会加 

剧政府和民众的担忧，导致需要发送更多的预警信息。 

另一方面，在极端降雨条件下，灾区常常出现断电断网 

情况，电话、短信等方式都无法有效地将信息发给基层 

人员，存在信息割裂的情况。因此，需要一个综合预警 

信息管理平台实现预警信息全链条闭合管理。 

3 自然灾害预警体系总体架构 

自然灾害预警体系是一个多层级、多环节的复杂系 

统，其运行遵循“监测—分析—决策—发布—响应—优 

化”的逻辑链条，各环节紧密衔接，形成闭环管理机 

制 [6]。随着“空—天—地—内”一体化监测技术、预警模 

型、大数据、人工智能及物联网等理论与技术的不断发 

展，针对地震、台风、暴雨、洪涝及地质灾害等类型的自 

然灾害预警模式，已由单一灾害监测逐步演进为以多学 

科融合、多技术集成为特征的智能预警体系 [7，8]。从时 

间维度来看，灾害的中长期预测通常基于历史资料统 

表1 自然灾害预警体系建设中的技术挑战总结 
Table 1 Summary of Challenges in the Construction of Natural Disaster Early Warning System 

自然灾害预警体系建设中的挑战和瓶颈 具体表现 影响与后果 

灾害机制与预警理论不足 难以解释复杂灾害系统的动力学行为，对突发性、 
局地性灾害预报精准度低；预测准确率波动大， 
对极端事件预测能力明显不足；智能模型存在 
数据缺失、“黑箱”等问题 

误报、漏报率高；影响预警信息的 
权威性和公众信任度 

监测网络覆盖率低 海洋、偏远山区及发展中国家监测设备覆盖不足； 
中高山带暴雨监测存在盲区 

难以支撑精细化预警；山洪灾害 
人员伤亡占比高 

数据共享与协同存在壁垒 各部门数据壁垒森严；监测数据格式各异，缺乏 
统一标准；数据融合难度大 

制约预警效能发挥；跨部门、跨灾种 
联动困难 

风险预警管理的滞后 预警信息审批流程复杂；预警信息“狼来了” 
效应多 

预警信息发布时效性差；公众避险 
响应效率低 
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计、致灾机理分析及风险评估进行趋势性判断；短临预 

报则依托多源数据与预警阈值开展区域性预报；临灾预 

警主要依赖于监测设备的实时数据进行动态预警 [9]。 

因此，在现代自然灾害预警体系建设中，其总体架构应 

以灾害演化物理机制与风险感知为基础，以隐患识别、 

监测技术与评估技术为支撑，围绕理论体系、技术体系 

与国家体系三大核心内容构建，最终服务于防灾减灾、 

应急救援及社区管理等实际应用场景（图1）。 

目前我国已经建立起来的国家—省市县—乡/村三 

级管理在灾害预警管理中发挥了重要作用，以此为基础 

的主要灾害类型预警体系也基本建立 [10-12]。然而，我国 

自然灾害预警体系的建设仍处于快速发展阶段，距离国 

家提出的“精准预警”目标依然相距甚远。在灾害预警 

技术日益革新的今天，预警技术发展的总体目标是在新 

环境下通过理论体系构建、新模式、新技术与新方法的 

研发以及国家体制的三重创新，构建适应极端气候与复 

杂孕灾成灾条件的预警技术体系，形成“空—天—地— 
内”一体化、“感—传—知—用”协同化的智能预警新范 

式。此外，在构建灾害预警技术体系过程中，应遵循先 

进性与成熟性相结合、可靠性、可管理性、安全性、高性 

能、实用性及经济性等基本原则以提升气候变化下预警 

技术的适应能力 [13]。 

4 理论体系建设 

在自然灾害预警领域，理论体系是支撑整个预警工 

作科学、高效开展的核心基础。随着气候变化和城市化 

进程的推进，强化自然灾害预警的理论体系建设，已成 

为构建可靠的预警技术体系、保障人民生命财产安全的 

关键所在。在所有预警基础理论中，灾害演化过程的预 

测预报模型与预警阈值体系和基于灾害—工程—社会 

协 同 的 综 合 预 警 机 制 是 当 前 亟 待 突 破 的 关 键 理 论  

（图2）。 

4.1 灾害演化过程的预测预报模型与预警阈值体系 

灾害演化过程与阈值体系是自然灾害预测预报预 

警的核心理论。灾害的孕灾成灾机理是预测预报的基 

础，灾害演化过程和多源数据融合是预警可靠性提升的 

关键，合理的阈值体系是灾害预警的重要抓手，其共同 

构成了未来动态风险感知的理论基础。在揭示灾害演 

化物理机制的基础上，建立灾害演化物理模型，并根据 

灾害演化多源数据特性，厘清灾害多源数据关联规则， 

继而结合物理模型与数据关联构建基于灾害演化过程 

的预测预报模型。 

构建能够精准模拟自然灾害发生、发展过程的预测 

模型是预警的核心，但灾害系统的复杂性与非线性特 

征、多灾种耦合以及小概率极端事件给预警模型的构建 

带来了巨大挑战。本质上自然灾害发生的过程通常遵 

循从能量积累到爆发释放的链式发展规律，因此当前的 

研究应当着手于灾害过程中的复杂物理过程和内在机 

理的揭示，并在此基础上融合多源数据与高效算法，实 

现对灾害演化及链式传导的动态模拟与预警。例如，当 

前已经初步发展了能够揭示不同演化阶段特征的台风 

暴雨、地质灾害、洪涝等灾害物理过程的模拟模型。但 

值得注意的是，在未来的模型研发过程中，多灾种耦合 

机制和链生致灾机制应当作为重点研究的对象以实现 

更高准确度的模拟。此外，通过深度学习等人工智能的 

方法为灾害演化过程预测预报提供新的方案，从而得到 

相较传统经验统计模型更加准确精细的结果。在人工 

智能的基础上，融入灾害形成演化过程中的机理，并通 

图1 自然灾害预警体系总体架构 
Fig.1 Overall Architecture of the Natural Disaster Early Warning System  
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过数据增强方法（如嵌入式物理约束、残差补偿模式、生 

成式数据增强方法）实现数据和物理融合，使模型更加 

适应于数据缺乏区域的风险评估，可能是解决人工智能 

模型数据缺乏和模拟结果不稳定的有效途径。 

另一方面，由于自然灾害孕灾环境复杂、诱发因素 

众多，灾害预警的阈值仍是重大科学问题。精确给出预 

警等级的合理阈值需要对大量历史灾情数据和现场监 

测数据进行反复验证和校准。然而，重大灾害事件样本 

稀少，且灾情数据收集困难、标准不一，进一步增加了阈 

值确定的难度。缺乏足够的高质量数据支撑，使得阈值 

的优化和本地化应用面临瓶颈。近年来，预警阈值正由 

单维静态向多维动态体系化、智能化发展，逐步由“经验 

统计”向“数据—机理融合智能”跃迁 [14]。在数据—机 

理融合智能阈值体系中，物理驱动模型（如水沙耦合）提 

供 机 理 基 础 ， 数 据 驱 动 模 型 （ 如 L o n g  S h o r t - Te r m  
Memory， LSTM）提升预测能力，融合模型（如联邦学 

习）则可弥合机理合理性与数据泛化性等鸿沟。然而， 

受到人工智能“黑箱”属性的影响，未来需进一步突破物 

理规则—AI架构的深度耦合、跨灾种阈值传导机制等关 

键技术，构建“感知—推演—决策—优化”全链条理论体 

系，实现精准防控目标。 

4.2 基于灾害—工程—社会协同的综合预警机制 

4.2.1 灾害风险基础理论——如何让多主体能够理解和 

掌握风险？ 

灾害风险基础理论的核心挑战在于如何将专业化 

的风险知识转化为多主体（政府、企业、社会组织、居民 

等）可认知、可操作的信息。不同主体对风险理解和关 

注侧重不同。政府负责宏观政策导向，防范系统性风 

险；企业受成本收益驱动，侧重避免资产损失；社会组织 

由资源协调导向，首要关注脆弱群体；居民受个人经验 

主导，主要关注生命财产安全。由此，需要将灾害风险 

相关的基础理论通过可视化、场景化表达形成多主体共 

识。例如，在政府灾害风险管理方面，通过GIS技术整合 

高精度地理信息地图、实时雨情水情数据及隐患点基础 

信息等资源，同时叠加承灾体分布（如房屋、道路）、四级 

淹没线、实时监测数据、灾害演化过程模型预测等，生成 

社区四级风险预警图，直观标注高风险区域分布，从而 

理解风险的时空演变和严重程度。在向企业、社会组织 

传递风险信息方面，通过数字孪生技术模拟灾害链（如 

暴雨→泥石流→堵江→溃决洪水），向施工单位展示厂 

房淹没深度、停工天数，量化经济损失，驱动其主动优化 

厂址、加固设施。而在向居民发布风险信息方面，将滑 

坡、洪水、泥石流等灾害专业模型风险指标分级量化，输 

出转化为四级风险预警信号（如红/橙/黄/蓝），并配套简 

明行动指南。在此基础上，同时利用大数据和人工智能 

技术，分析不同主体（如老人、青年、小孩等）的历史行为 

偏好和信息关注点，并基于移动人口热力分布大数据， 

利用地理围栏技术，实现空间定位的预警信息精准靶向 

发布，并实现风险信息的“千人千面”个性化解读和推 

送 [15，16]。 

4.2.2 灾害风险减轻理论——如何利用多手段减轻灾害 

风险？ 

致灾因子、承灾体的暴露度和脆弱性决定灾害风 

险。风险包含三个核心要素，分别是风险潜在原因、风 

险具体引发事件和风险造成的实际影响。灾害风险减 

轻理论强调通过系统性多手段干预风险要素，实现灾害 

损失最小化。在我国，气象灾害占自然灾害70%以上， 

因此在气候变化加剧极端天气频率的背景下，自然灾害 

风险随着致灾强度与承灾体的暴露度和脆弱性的耦合 

而增高，通过切断风险传导链，能够有效降低灾害风险。 

当前灾害风险减轻强调从“静态防护”向“动态适应性调 

控”的转变，分级靶向叫应、工程与非工程措施协同以及 

自适应韧性调控等减轻灾害风险措施正在蓬勃发展。 

在分级靶向叫应方面，依托信息化系统发展市级研判、 

县级推送、乡级落实、村级“叫应”的分级机制，以确保职 

责分工以及预警信息能迅速转化为基层的具体行动。 

在工程与非工程措施协同方面，针对“暴雨—山洪—泥 

石流—堵江”等具有链式成灾特点的自然灾害，不仅要 

在上游建设拦挡坝等工程设施，更要通过实时预警模型 

提前预警并调度下游可能受影响区域的人员转移，形成 

工程与非工程措施深度协同的防控体系。自适应韧性 

调控可通过在关键基础设施（如排水管网、交通枢纽、电 

力设施）中嵌入智能传感和控制系统实现自适应调控来 

提高城市韧性。例如，智能排水管网根据预报雨量自动 

预腾空容量、智慧交通系统自动规划并提示应急疏散路 

线等。此外，从灾害风险全链条减轻的角度，可通过“切 

图2 理论体系建设总体架构 
Fig.2 Overall Architecture of Theoretical System Construction  
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断致灾链—减少暴露面—赋能承灾体”的模式达到减轻 

灾害风险的目标。即首先通过集成卫星和航空遥感、地 

面传感器等多源数据的融合与应用进行灾害演化情景 

模拟，精准识别风险潜在原因；其次通过工程措施、灾害 

智能预警等手段阻断灾害事件的致灾路径；最后通过规 

划调控和韧性设计降低承灾体的暴露度和脆弱性。例 

如，长江流域洪涝防控通过数字孪生平台“云长江”预演 

分洪方案，2024年洪峰调度误差<3%；由中国地质环境 

监测院牵头研发的滑坡仪和智能预警系统成功预警 

2 512处滑坡隐患点，避免366人伤亡。 

4.2.3 灾害风险管理理论——如何让多主体能够预防和 

规避灾害？ 

理想的灾害风险管理强调全过程管理，涵盖灾前的 

预防与准备、灾中的应急响应以及灾后的恢复重建。然 

而，当前重大灾害的风险管理面临着跨部门、跨区域的 

信息共享和行动协同壁垒、权责配置模糊、社会参与不 

足、防灾减灾救灾资源分配不均等问题。未来在灾害风 

险管理中，突破传统“政府主导—被动响应”模式，建立 

“风险共识—责任共担—能力共建”的多主体协同预防 

与规避，是缓解上述问题的有效途径。在多主体协同的 

框架下，利用数字孪生技术和可视化工具（如动态风险 

地图、灾害情景模拟）将专业的风险信息转化为政府、企 

业、公众等不同主体都能直观理解的内容，形成多主体 

风险共识。通过立法、政策激励和契约设计等手段明确 

各主体的责任，形成责任共担。例如，政府负责宏观规 

划与协调，企业需履行安全生产和风险防范的主体责 

任，社区组织负责本地化动员与信息传递，公众则应积 

极参与自救互救。而在能力共建方面，针对不同主体应 

当充分发挥各自的优势。例如，对政府人员，侧重应急 

决策指挥培训；对企业，侧重安全生产和灾备流程培训； 

对社区和公众，则侧重普及逃生避险和互救技能。最 

终，整合隐患点、工程、社会组织和政企部门，形成综合 

预警管理机制，建设能够跨空间和时间尺度的综合减灾 

系统，针对性提高不同主体的灾害应对短板。 

5 技术体系建设 

在自然灾害预警工作中，预警技术体系建设是将预 

警理论转化为实际预警能力的核心载体。伴随着大数 

据、人工智能、云计算、数字孪生等新技术的发展，自然 

灾害预警迎来了新的突破性发展机遇。如何充分采用 

新的技术和平台实现多源数据的高效融合和利用，实现 

预警的精准化、智慧化，让预警信息惠及更广泛的社会 

群众，是技术体系建设的核心内容（图3）。 

5.1 数据与物理融合驱动的灾害预测预报预警技术 

数据与物理融合驱动的灾害预警模式和方法是解 

决灾害科学预测的重要途径，结合灾害预警阈值体系可 

开展灾害科学预测预报预警。当前适用于精细化灾害 

预测预报的模型大致可分为物理模型和数据驱动模型 

两种。 

物理模型基于力学原理和能量物质守恒定律，通过 

对灾害孕育演化过程的数学描述提供物理一致性保障， 

如岩土力学中的摩尔—库仑准则、流体力学中的Navier- 
Stokes方程等。由于物理模型通常融入了灾害演化过程 

的物理机制，其能更好地揭示灾害发生的本质。这类模 

型在参数确定、边界条件清晰的情况下表现稳健，但在 

实际复杂环境中常因参数化不足或尺度效应导致精度 

下降。 

数据驱动模型则以机器学习为代表，通过深度神经 

网络等算法从海量监测数据中挖掘隐藏规律，具备强大 

的非线性拟合能力，特别适用于高维特征空间中的模式 

图3 灾害预警技术体系建设 
Fig.3 Construction of the Disaster Early Warning Technology System  
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识别。例如，清华大学与国家气象中心联合研发的 

NowCastNet模型，通过端到端模拟降水的物理过程，实 

现了对极端降水的3小时临近预报、1 km空间分辨率的 

精细化预测，在2021年江淮暴雨和美国龙卷风事件中， 

对降水强度、落区和运动形态的预测准确率显著优于国 

际同类方法 [17]。类似地，Google DeepMind的DGMR模 

型采用生成对抗网络（Generative Adversarial Network ， 

GAN）处理雷达回波数据，可提前2小时预测暴雨中心位 

置，帮助城市防汛部门提前部署排水设施。另一方面， 

多源异构数据的融合方法具有能够从更多数据中提取 

更有用信息的特性，近年来也在蓬勃发展。例如，DDE 
深时数字地球 [18]（Deep-time Digital Earth， DDE）通过融 

合地质雷达、卫星遥感和历史灾害数据，建立多尺度风 

险预测模型，利用区块链技术实现多源数据安全共享， 

整合全球地球科学数据与人工智能技术，致力于构建一 

个跨越数十亿年时空的数字地球模型，为人类理解地球 

过去、把握现在、预测未来提供全新视角。虽然数据驱 

动模型表现出强大的预警能力，但是其“黑箱”特性会导 

致模型的结果难以被理解等问题。 

传统物理模型（如水动力方程）与数据驱动模型（如 

Graph Neural Network ， GNN）深度耦合既可规避纯物理 

模型“过度理想化”和纯数据模型“过拟合”的双重陷阱， 

又能通过协同优化提升预测的准确性与鲁棒性。例如， 

在神经网络损失函数中加入物理约束（如质量守恒方 

程），提升山洪模拟的合理性 [19，20]；通过LSTM修正流体 

力学模型的局部误差，在溃坝洪水推演中将计算时间从 

小时级缩短至分钟级 [21]；为解决全球范围内所有流域 

（测量和未测量）的流量预测问题，一种新的混合深度学 

习模型——编码器—解码器双层长短期记忆 [22]，在美 

国、加拿大、中国和英国的2 000多个集水区中得出了平 

均纳什—萨克利夫效率系数0.75，突显了最先进的机器 

学习对传统水文模型的改进，证明了深度学习方法在克 

服普遍存在的水文信息缺乏以及物理模型结构和参数 

化缺陷方面的潜力。当前数据与物理融合模型在自然 

灾害预警领域表现出了极强的优势，然而，传统物理模 

型基于坚实的数学物理方程，而数据驱动模型依赖统计 

学习和逼近理论，如何保证两者给出的解的物理一致性 

和收敛性，如何精确追踪、分离和量化不同模型的误差， 

如何有效嵌入物理约束等问题，还需要进一步研究。面 

对这些问题，未来的研究可以更多关注更鲁棒的基础融 

合理论、更高效稳定的混合算法以及面向自然灾害领域 

的标准化耦合框架等方向 [23]。 

5.2 基于大数据和数字孪生的预警系统平台架构技术 

在数智化背景下，自然灾害预警系统引入大数据和 

数字孪生技术，为灾害风险评估和决策提供了创新的支 

撑工具 [24]。 

在理论层面，基于大数据和数字孪生的预警系统平 

台通过数据融合、动态仿真与智能分析，实现对复杂风 

险的早期识别与主动干预，其核心价值在于以虚驭实， 

让风险可见、可算、可控，推动政府预警管理朝着智能 

化、精细化方向发展。其主要包含以下四个关键部分： 

（1）多源实时数据的接入，需要整合灾害、工程、社会经 

济等多源实时感知数据，并经过预处理，对数据执行初 

步清洗、异常检测等标准化处理步骤；（2）数据库及地理 

信息系统，可采用数据库存储和管理结构化和非结构化 

数据，支持高并发访问；（3）灾害多情景推演，需要根据 

灾害演化物理模型，采用高效并行求解算法实现灾害全 

过程多场景的快速推演；（4）超算和云端算力支持，大数 

据处理和数字孪生的动态仿真需要强大的算力资源作 

为关键支撑 [25-27]。毫无疑问，大数据分析技术凭借着在 

可视化、分析和预测自然灾害方面突出的能力，为自然 

灾害管理提供了新的选择。数字孪生的核心在于利用 

传感器、物联网、大数据等技术，将物理实体的状态、行 

为和性能实时映射到虚拟空间，形成可模拟、预测和优 

化的数字副本，通过云计算、虚拟地理环境等技术，建立 

高效、可靠的信息平台，支撑灾害预警管理、政府决策和 

应急响应 [28，29]。 

在应用层面，大数据驱动通过引入机器学习算法， 

将对情感进行分析的灾难响应方法用于灾害中人们的 

需求分析，有助于应急和救援人员制定战略，对迅速变 

化的灾害环境进行有效的信息管理 [30]。例如，针对大 

坝安全监测管理中海量数据管理、风险识别灵敏度及预 

警预报响应时效等方面存在的不足，应用BIM技术、可 

视化技术构造数字模型来分析得到大坝各部位运行状 

态；应用关系数据库技术（MySQL）、图数据库技术 

（NEO4J）及微服务技术进行数据管理，构建包含完整监 

测信息的大坝数字孪生安全监测系统，实现大坝的在线 

安全风险评估和安全预测预警 [31]。在洪水灾害风险管 

理中，通过大数据构建灾害过程的数字化模型，实现洪 

水淹没、内涝积水等的模拟仿真与预警预报，并为应急 

演练、抢险调度等提供虚拟环境，为提高水灾害防御的 

主动性、针对性、协同性提供了新思路 [32，33]。当前，大 

数据和数字孪生技术在指挥决策应用中还面临数据汲 

取与安全风险、模型可靠性与准确性风险、高开发成本 

与高运营成本挑战、技术协同与组织协作挑战等。未 

来，数字孪生技术赋能应急决策应注重提升数据的准确 

性与安全性，增强模型可靠性与迭代能力，推进数字孪 

生技术普及化，促进技术成熟与组织协作 [34，35]。 
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5.3 基于过程推演的灾害精细化预报预警技术 

对于洪涝、滑坡、台风等具有明显物理演化过程的 

灾害，其精准预警依赖对“孕灾—致灾—成灾”全链条的 

清晰把握。基于过程推演的灾害预警技术正是通过整 

合多源异构数据和物理演化机制，突破灾害从触发到形 

成演化过程快速模拟技术，从而实现从孕灾到发灾全过 

程精细化模拟与预警决策。在监测—模拟—决策—反 

馈这一闭合循环的链条上，基于过程推演的灾害预警技 

术的前提是对孕灾环境的精准感知，核心是通过动态过 

程推演预测灾害的非线性演化，结果用于灾害预警决 

策，优化途径依赖承灾体的反馈。对应地，这一技术体 

系包含四个关键层次：环境感知层、模型推演层、决策引 

用层、响应反馈层。“空—天—地—内”一体化立体监 

测，能够对气象、水文、地表形变等孕灾因素进行全方位 

感知。基于物理模型对灾害过程的推演模式能够提供 

比传统临界阈值模式更精细的中间过程、更精准的影响 

范围和更丰富的决策依据。精细化的预报预警结果支 

撑决策和管理平台的统一调度。决策人员、监测员、当 

地居民等对预警信息多层级多方位的响应和反馈助力 

灾害精细化预报预警技术持续优化。 

基于过程推演的灾害预警模式已经在多个领域取 

得突破性进展，在应对极端天气、地质灾害防控、城市韧 

性提升等多个场景中得到了验证，结果表明，该技术能够 

延长预见期、优化决策响应策略。例如，梁秋华教授团 

队 [36，37]利用基于GPU的异构并行高效算法预测强降雨 

引起的高度瞬态洪水过程，可实现对大河段乃至整条河 

流的高分辨率长时间情景模拟。在天气预报提前36小时 

发布的情况下，完整的二维水动力学模型已经被应用于 

预测2 500平方千米流域内分辨率为10米的极端洪水事 

件，并可提供提前34小时的预报时间 [38]。利用来自不同 

来源的开放数据和高性能水动力学模型、深度—损伤曲 

线来评估冰川溃坝（Glacial Lake Outburst Floods，GLOF） 

对不同暴露对象的损伤程度、潜在社会经济影响 [39]。 

尽管基于过程推演的预警技术取得显著进展，但在 

数据质量、模型耦合、计算效率等方面仍存在瓶颈。另 

一方面，监测设备缺乏长期维护、多相多物理过程的耦 

合难题尚待解决，物理求解效率仍需提升。 

5.4 基于人工智能和大模型的预警新技术与新方法 

人工智能与大模型技术的特色在于其强大的泛化 

与自适应能力，为统一应对不同灾害的复杂性提供了新 

范式。其策略核心从“为单一灾种构建专用模型”转向 

“构建基础大模型，并通过微调适配多灾种任务”，从而 

实现从单点突破到全链条优化的技术革新。以下从两 

个方面阐述。 

5.4.1 从单点突破到全链条优化的技术革新 

人工智能与大模型正在从单点突破到全链条优化 

重塑现代预警系统 [40]，在人工智能和大模型技术的支撑 

下，自然灾害预警体系的未来逐渐清晰，通过多模态数据 

融合分析、动态风险建模与智能决策生成三大技术支柱， 

可显著提升对灾害复杂风险预测的精准性与时效性 [41， 

42]。基于多模态大模型CLIP、视觉Transformer等架构， 

将多种数据源（遥感图像、传感器网络、卫星气象观测、测 

雨雷达观测、隐患点排查等）与社交媒体融合分析，并采 

用动态时间规整技术解决传感器时序异步问题，可获得 

出色的长程依赖性处理能力并降低轻量级推理的延 

迟 [43]。借助高级Transformer变体以及可解释人工智能 

技术，提高模型的可解释性和可扩展性。通过跨区域联 

合训练模型，解决小样本问题；基于扩散模型生成百万级 

灾害场景库，突破历史数据不足限制。利用SHAP值量 

化特征贡献度，辅助专家复核决策 [44]。根据实时数据自 

适应动态调整优化预警阈值，降低误报率 [45]。 

5.4.2 从气象到地质灾害的全场景覆盖行业应用 

人工智能技术和大模型将物联网与遥感系统相结 

合进行实时灾害监测，促进气象预报、地震预报、洪水预 

报、野火探测以及其他灾害评估。在气象领域，盘古、伏 

羲等14个人工智能天气预报模型已经参加实时预报示 

范，中国“风”系列大模型（风雷、风清、风顺）将台风路径 

24小时预报误差压缩至62千米，暴雨预警准确率达93%， 

强对流预警提前43分钟 [46]；华为盘古气象大模型基于创 

新的3DEST（3D Earth-Specific Transformer）架构仅用1.4 
秒即可完成全球24小时天气预报，速度较传统方法提升 

10 000倍，且在所有测试变量上的均方根误差（Root Mean 
Squared Error，RMSE）均低于ECMWF等业务系统 [47]。 

在地质灾害预警领域，滑坡智能监测自然资源部 

V1.0系统融合北斗定位与AI算法，在9省2 512处隐患点 

成功预警15起滑坡。范宣梅教授团队 [48]基于全球40万 

处滑坡数据，构建多尺度全卷积网络，1分钟内预测滑坡 

空间概率（精度82%），较传统模型提升20%；谛听地震大 

模型获得了全球第一个亿级参数量的地震波大模型，可 

应用于矿震监测、页岩气开采、城市地下空间结构探测、 

海底地震监测等多个领域 [49-51]。 

当前在自然灾害预警领域应用人工智能和大模型 

仍然存在不少瓶颈，如数据质量、数据可用性、数据异构 

性、极端事件泛化算力成本、隐私伦理等 [21]。未来极具 

价值的研究方向包括：图神经网络建模灾害链传导路 

径，实现多灾种联动预警；DeepSeek等大语言模型 

（Large Language Model，LLM）通过CoT技术拆分复杂需 

求，赋能灾害“风险识别—评估—对策”全链条解决方 
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案；数据的可解析性和迁移性；灾害预警AI模型、算法； 

多模态大模型和推理大模型。 

6 国家体系建设 

国家体系建设是在自然灾害预警理论体系和技术 

体系的基础上，通过考虑“多尺度时空数据”“多层级空 

间范围”“多类型自然灾害”和“多耦合致灾机制”的相互 

作用关系，从宏观到微观、由面到点、由单一到复杂等多 

维角度准确刻画复杂环境条件与自然灾害发生的内在 

联系，旨在构建更加精准、可靠、高效的自然灾害预测— 
预报—预警全链条技术体系，服务于国家防灾减灾救灾 

能力的实质性提升 [52，53]。 

目前，自然灾害预测—预报—预警技术包括中长期 

预测（月—季—年尺度）、短临预报（小时—天尺度）和临 

灾预警（分钟—小时尺度），其性能主要受限于观测数据 

的时间尺度以及模拟方法的精度。例如，中长期预测在 

灾害预测中具有较高的不确定性，难以有效指导区域规 

划与风险管控；短期预报对突发性强、尺度小、发展快的 

灾害（如强对流天气等）仍缺乏足够的预报能力；临灾预 

警的时效性和可靠性仍然是短板，多数灾害的预警时间 

窗口极短（几分钟至十几分钟），如滑坡泥石流、城市内 

涝等突发灾害。随着城市化进程的加快和工程设施日 

益复杂，一些特殊灾害类型如四川马烈乡山洪泥石 

流 [53]、城市灾害链 [54，55]、梅大高速滑坡灾害，呈现出空 

间跨区、尺度多样、响应链条复杂等特点 [56]，其产生的 

影响远超简单叠加的线性效应 [57]，这对传统单灾种、单 

尺度灾害预警体系提出了更高要求和新的挑战 [58，59]。 

综上所述，我国自然灾害预警国家体系建设在科学 

性、系统性和精准性等方面仍面临诸多挑战：如何构建 

多时间尺度的预测—预报—预警技术体系，实现预测的 

科学性、预报的精准性、预警的时效性；如何构建全国— 
省/市/县—乡/村三级预警技术体系，综合统筹全国—区 

域—灾点的空间层级关系，有效提升预警系统的科学性 

和可操作性；如何构建针对特殊灾害的预警技术体系， 

阐明跨区域、多尺度、强耦合孕灾机制，灾害的非线性叠 

加效应与链生转化机制以及灾害的管理协调问题等。 

由此可见，国家体系建设是一个系统性的科学问 

题，针对当前的研究热点和学术前沿难点，需从时间多 

尺度、空间多尺度、多灾种链生等角度出发，通过结合人 

工智能、大数据、数字孪生等前沿技术，深化“空—天— 
地—内”一体化监测，推动多尺度、多层级、多灾种、跨部 

门协同预警模式创新。其重点领域包括：构建中长期预 

图4 国家灾害预警技术体系建设 
Fig.4 Construction of the National Disaster Early Warning Technology System  
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测—短临预报—临灾预警的自然灾害预测—预报—预 

警技术体系，提升中长期预测的科学性和可靠性、短临 

预报的精细度和精准度、临灾预警应对灾害的时效性， 

实现我国从灾后响应向灾前防控转变的核心技术支撑； 

构建自上而下的全国—省/市/县—乡/村三级灾害预警 

技术体系，分别统筹全国—区域—灾点三个空间层级关 

系，实现区域危险性预测、流域响应单元危险性预报和 

灾点险情精细预报，从而实现信息传递链条的完整闭 

环，是增强预警“最后一公里”时效性的基础工程；构建 

多部门联动和数据共享机制、多灾种复合预警模型和灾 

害链耦合预警模型，发展能够有效应对复杂自然灾害的 

新型预测—预报—预警技术体系，全面提升我国抵御自 

然灾害的综合防范能力（图4）。 

7 结论和展望 

我国已初步建成“理论—技术—国家”三位一体的 

自然灾害预警体系，基于覆盖国家—省/市/县—乡/村三 

级的预警管理体系已形成“政府主导—预警先行—部门 

联动—社会参与”的中国模式，且正处于智能化、集成化 

转型阶段。依托全球最大综合气象观测网（风云卫星、 

气象雷达等）和地面综合监测网络等立体监测体系，融 

合基于物理过程的预报预警模型、人工智能算法等，我 

国灾害预警系统能够对自然灾害进行过程预报和智能 

推演，但在应对复杂灾害链和极端气候事件时仍面临系 

统性挑战。 

基于大数据、大模型、人工智能、数字孪生等新技 

术、新方法，正在从单点突破到全链条优化重塑现代预 

警系统。数据与物理融合驱动的灾害预警模式和方法 

能充分发挥二者的优势，是解决灾害科学预测的重要 

途径。 

未来，在灾害理论体系建设方面，应持续突破多灾 

种和复合链生灾害的科学和技术短板、健全灾害—工程 

—社会协同的综合预警机制。在技术体系建设方面，基 

于数据与物理融合驱动计算的灾害预测预报预警技术 

需要进一步优化融合方式、整合多源异构数据、动态调 

整阈值。在国家体系建设方面，推动多部门数据共享、 

跨部门预警信息沟通、多层级预警管理体系协同，全面 

提升我国自然灾害综合抵御能力。 
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Abstract Constructing an efficient natural disaster early warning system is regarded as a core means to enhance climate 
change adaptability，and also an effective approach to reducing casualties and economic losses. However，the current 
theories，technologies，and systems related to natural disaster early warning still face enormous challenges. Therefore，this 
paper systematically sorts out the scientific challenges and technical bottlenecks confronted by natural disaster early 
warning，proposes the overall architecture of the natural disaster early warning system，elaborates on the paths and key areas 
for the construction of China’s natural disaster early warning system in detail from three aspects：theoretical system， 

technical system，and national system，and conducts beneficial discussions on how emerging technical methods such as 
artificial intelligence，digital twin，and big data can promote the improvement of early warning capabilities. 

Keywords forecasting principles and theories；early warning models；early warning thresholds；early warning coordination 
mechanisms；disaster chain early warning；large-scale early warning models  
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