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Challenges and Responses in the Mechanisms
and Prediction of Strong-earthquake-triggered Geological Hazards

Xuanmei Fan”  Lanxin Dai  Xin Wang  Mingyao Xia  Junhan Du  Jie Liu

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China

Abstract Strong earthquakes are one of the major triggers of geological hazards in mountains,posing severe threats to
human lives, property security, high-quality socioeconomic development,and the safety of national infrastructure projects.
With the rapid expansion of urban construction, the implementation of major national projects,and the intensifying impacts
of climate change,the risks of geological hazards induced by earthquakes and extreme climate events have markedly
increased. However, systematic studies on the chain evolution mechanisms of earthquake-triggered hazards and their risk
prevention and control strategies remain insufficient. This paper reviews recent advances in three key aspects; The initiation
mechanisms and susceptibility prediction of coseismic landslides,the post-seismic hazard chain evolution mechanisms and

forecasting approaches,and the long-term effects of earthquake-triggered geological hazards. We identify two fundamental

* Corresponding Author, Email : fxm_cdut@qq.com



F39% %6l UM AT ¢ R b BT R S LB I 06 Pk S T 1029

scientific and technical challenges: (1) understanding the cross-scale spatiotemporal evolution laws and dynamic
mechanisms of strong-earthquake hazard chains,and (2) developing data- and mechanism-driven predictive frameworks
for hazard risks. To address these challenges,we suggest adopting an Earth system science perspective to investigate how
tectonic forces and climate change jointly affect the shallow lithosphere,,and to explore the disaster-forming environments
shaped by tectonic-climate-geomorphic interactions. This requires the establishment of a long-term database of strong-
earthquake-induced hazards to reveal their spatiotemporal evolution; the elucidation of slope seismic response processes and
cascade evolution mechanisms under cross-scale , multiphase , multi-field, and multi-factor coupling ; and the development of
new paradigms for hazard chain risk simulation and prediction through the deep integration of dynamic process models,
artificial intelligence,and high-performance computing. Furthermore,by promoting interdisciplinary collaboration and
cross-sectoral coordination,it is essential to strengthen emergency response and risk prevention systems for strong-
earthquake-triggered hazards,thereby supporting the construction of an efficient and scientific national disaster prevention
and control framework and contributing Chinese case studies to global research and mitigation of strong-earthquake
geological hazards.

Keywords strong earthquake-triggered geological hazards;hazard chain mechanisms;monitoring and early warning;

susceptibility prediction;natural hazard prevention and control system
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