当前位置:首页 >> 基金要闻 >> 资助成果

 

    我国学者首次报道精确可逆的融合与分裂

    日期 2021-08-13   来源:工程与材料科学部   作者:丁玉琴 李晓锋  【 】   【打印】   【关闭

      在国家自然科学基金项目(批准号:52090030、51533008、51703194、11890674、 51873191)等的资助下,浙江大学高分子系高超教授团队创造性地利用氧化石墨烯(GO)纤维的二维基元结构和大体积收缩动态特性首次实现了宏观材料的精确可逆融合与分裂。合作者西安交通大学刘益伦教授团队对这一过程进行了力学分析及有限元模拟。相关成果以 “氧化石墨烯纤维的可逆融合与分裂(Reversible fusion and fission of graphene oxide-based fibers)”为题发表在《Science》上。论文链接:https://science.sciencemag.org/content/372/6542/614。

      使人工材料具有动态转变特性的可行方法之一是将材料以多单元组装体的形式分解和重组。这需要组装单元之间的界面能够同时满足两个特性:界面结合与按需解离。近年来研究者们利用仿生学的原理进行了一些有益的探索,模仿自然界生命体中细胞的融合与分裂。例如,聚合物胶束和囊泡可在表面活性剂或光的刺激下发生类似细胞融合或分裂的行为,金属团簇及纳米颗粒可在高温下发生融合或分裂现象。对这些现象的研究有利于发展人工组装体可控的形态学变化,从而拓展其在新型动态组装、药物递送和释放、受限空间化学反应、合金纳米颗粒制备等领域的应用。模仿此类生命体的行为将成为构筑新型功能性组装体的有效策略。然而,生物体内及以前报道的融合与分裂现象,往往组装体之间的界面发生了不可逆的物理或化学变化,导致融合与分裂过程难以精确可逆,即组装体的数量、尺寸、化学组成、结构在一个融合与分裂循环后不能完全恢复至原先的状态。如,两个肥皂泡可融合成一个泡;但当这一个泡再分裂成两个泡时,已经不是原来的那两个泡了,其中的物质组成已经改变。因此,如何实现精确可逆的融合与分裂,成为物质动态组装领域的重大科学难题。

      该研究团队创造性地利用GO纤维的二维基元结构和大体积收缩动态变化,将GO纤维作为模型探索精确可逆融合与分裂所需要的必要条件。GO作为一种新型的软材料具有二维拓扑、丰富的含氧官能团、超柔韧、自粘接等特性。由GO液晶水溶液通过湿法纺丝制得连续达米级的GO纤维,其典型的纤维直径为12 μm,约为头发丝的七分之一。在水等溶剂的作用下,GO纤维可发生显著的吸湿溶胀及干燥收缩,其体积膨胀率最高可达40倍。利用多根纤维在溶胀及收缩过程中的自适应形变,实现了精确可逆融合与分裂。这一过程中,GO纤维具有皮肤一样的较致密的壳层结构维持了单根组装纤维的完整性,保证了融合与分裂的可逆性。在每个融合-分裂循环后,GO纤维的数量、尺寸、组成、结构和性能可以恢复至循环前的原始状态。有趣的是,与高分子等其他种类的纤维相比,融合GO纤维的力学拉伸强度随着直径的增加(如从23 μm增大到78 μm)不会明显下降,基本稳定在287 MPa,这打破了经典的纤维强度与直径成反比的Griffith理论。100根融合的GO纤维在热还原后直径为58 μm,力学拉伸强度高达597 MPa。因此这种融合组装方法有利于制备大直径高性能结构材料。可逆的融合-分裂特性还可以通过GO涂层拓展到各种传统的纤维材料上,如尼龙、蚕丝、不锈钢丝、玻璃纤维等。同时这种性质还被用来制备新型的具有动态转变能力的组装结构。如在一根致密的融合纤维与一张柔性的节点融合纤维网之间可逆转化,在纤维与多种复杂的纤维基组装结构间可逆转换等,并开发出对多种客体的可控释放等进一步的应用。因此,该研究真正实现了宏观组装体的可强化、可解离、可重组、可应用的动态多维特性。这为未来新型功能响应材料的设计提供了一种全新的策略。

    图A1-A4 典型的100根GO纤维在水溶剂的诱导下自融合过程的扫描电镜照片;图B1-B4. 可逆的分裂过程的扫描电镜照片