« Reviews -«

Software defined networking: Technologies and
solutions toward an open network eco—system

[LIU FangMing ( )'*, GUO Jian' & LIU JiangChuan’
"'School o f Computer Science and Technology, Huazhong University of Science
and Technology , Wuhan 430074, China;

? Simon Fraser University . Canada
Received January 16, 2017; accepted February 15, 2017

Abstract  Software-defined networking (SDN), a new networking paradigm decoupling the software
control logic from the data forwarding hardware, promises to enable simpler management, more flexible
resource usage and faster deployment of network services. It opens network functionality, application
programmability, and control—to— data communication interfaces that used to be closed in conventional
network devices, offering endless opportunities but also challenges for both existing players and
newcomers in the market. Through a comprehensive and comparative exploratory of SDN state— of —the—
art techniques, standardization activities and realistic applications, this article unveils historic and technical
insights into the innovations that SDN offers toward an emerging open network eco—system. We closely
examine the critical challenges and opportunities when the networking industry is reshaped by SDN. We
further shed light on future development directions of SDN in broad application scenarios, ranging from

cloud datacenters, network operating systems, and advanced wireless networking.

Keywords Software defined networking; Open network eco — system; Cloud computing; Datacenters;
Network operating Systems
doi: 10.16262/.cnki.1005—0841.2017.01.001

1 Introduction

Analogical to the explosive invention and popularization of PCs that separates operating systems (OSes)
from the underlying hardware, So ftware-Defined Networking (SDN) enables an open programmable
network norm that separates the data plane from the control plane in conventional network devices [1]. In
the SDN architecture, the hardware is only responsible for simple packet forwarding while the decision of
forwarding is controlled by a logically centralized controller, which enables network programmability
through accessible interfaces for network operators (See Fig. 1). With simple and general interfaces,
network operators are able to program the control logic, globally monitor network status and enable
automatic response to network events.

Openness lies in the heart of SDN, evidently from the brand names of such key emerging SDN associated
organizations as Open Networking Foundation (ONF) [27] and representative projects as OpenFlow [ 37].
Decoupling the software control logic from data forwarding hardware, the long-run mission of SDN is to
build an open networking architecture that gathers together the intelligence from both existing players and
startups in the computer networking market toward a new eco-system with endless opportunities. It
facilitates software design with open programmable interfaces and standardizes hardware manufacturing

with open architectures. For SDN users, the open programmability of SDN can dramatically reduce the

* Corresponding author (Email; fmliu@ hust. edu. cn, Web: http://grid. hust. edu. en/fmliu/)

42 Vol.25, No. 1, 2017 SCIENCE FOUNDATION IN CHINA



« Reviews -

Figure 1 Abstraction of SDN architecture: three layers and two interfaces.

cost of network development and management where such complex network services as cloud datacenters
and enterprise networking are needed. The visibility of packet forwarding also produces chances to design
new protocols and reveal networking principles for research and education.

This obviously opens a Pandora’s box that has long been controlled by the network hardware
manufacturers. For decades, the public network was made as a black box to users by sealing both software
and hardware as well as both data and control into network devices, providing limited accessibility and
configurability, not to mention programmability. Today, SDN is drawing exploding public attention from
both academia and industry. According to an SDN central report [4], the Venture Capital investment in
SDN has increased 50 times over the last three years, and a report from the IDC [ 5] further predicts that
the SDN market size will grow to 3. 7 billion dollars by 2016. Yet there remain numerous questions to be
answered after opening the Pandora’s box: Which aspects of the network architecture can be or should be
opened by SDN  What kind of open functionality can SDN realize Which players will benefit from such
open opportunities and innovations, or influenced by the challenges and monopolistic competition market
To name but a few.

This article aims to explore the potentials and design spaces of SDN from diverse aspects, seeking
answers to these questions and also raising issues toward future research and development. Different from
early surveys that focus on programmable networks and their development toward SDN [ 6—8 ] or the
security challenges in SDN [ 9], we investigate both technical and industrial impact of SDN from the
perspective of an open network eco-system. We survey the roadmap and standardization activities of SDN,
examining its rapid evolution from a concept of programmable networks to an eco-system of cooperation
and competition. From a technical perspective, we closely dissect the architectural design choices and
compare the state-of-art SDN solutions, including both its data plane of simple forwarding hardware and its
control plane towards a networking operating system, and more importantly, their interplays via open
communication interfaces. Specifically, we discuss the development from earlier SDN versions based on the
single match table in switch, physical centralized controller and low-level APIs, to advanced versions based
on multi-stage matching switch, distributed multiple controller instances and high-level easy-to-use APIs.

From an application perspective, we illustrate how SDN can be widely applied in both wired and wireless

SCIENCE FOUNDATION IN CHINA Vol.25, No. 1, 2017 43



« Reviews -

networks, ranging from wide-area traffic engineering for geo-distributed datacenter networks, intra-
datacenter network management, switch control and optimization, to wireless network re-design.
Furthermore, we envision the future development trend in SDN under broader scenarios, such as
improving the scalability and reliability of control platform and enhancing the simplicity and generality of

programmable interface.
2  The emergence of SDN

In conventional computer networks, a large collection of such network devices as switches and routers
perform data forwarding according to complex network protocols, which are generally “born” there when
manufactured by their hardware vendors. These network elements have very limited flexibility, each
working as a “black box” once being deployed, so is the whole network system. Given that the software
implementation is tightly coupled with the hardware infrastructure, such a system can hardly evolve to
accommodate new network protocols or quality of service mechanisms. A typical example is the IPv4 to
IPv6 transition in the Internet. Despite that the IPv6 protocol has been officially standardized for over 15
years and there is an urgent need for its deployment, it carries only 2. 4% Internet traffic as of today [10].
There have been numerous transition plans being proposed, but the limited configurable interfaces of the
existing network devices bring significant challenges for a network administrator and operator to easily
deploy and manage such new services. Network operators have to learn lots of low-level configuration
commands as well as understand the underlying network protocols, so as to meet high-level network
service requirements with these complex commands. Moreover, as network events (e. g. , congestion, IP
changes) occur frequently, operators must manually re-configure the policies in response to the changing
network status.

2.1 Programmable networking: Early attempts

Driven by the ability to rapidly create and deploy new control and management tools in response to users’
network service demands, the idea of programmable networks has been discussed in both academia and
industry for decades along with the development of traditional IP networks. The first two well-known
schools of thought on programmable networks were raised in the 1990s— Active Networking (AN) by the
DARPA [7] and Open Signaling by the Open Signaling Working Group (OPENSIG) [10].

The AN community advocated dynamic runtime support in network devices for new services, so as to
enable network customization under the architecture of existing IP networks. The packet behavior, even
the configuration of flows or switches, can be controlled by executable programs comprised in “active
packets”. The runtime deployment of services realizes highly dynamic software control in networks. It
however imposes great complexity to the programming model for code mobility and runtime support in
resource-constrained network devices.

The OPENSIG community suggested taking a telecommunications approach to make the network
programmable by opening programmable network interfaces in switches and routers. The IEEE Project
1520 [12] also took an attempt to standardize software interfaces for programming of network devices,
including ATM switches, circuit switches and IP routers.

These innovations have tried to create a paradigm shift for networks aiming at application layer
programmability for new service deployment. Although being less successful, these early ideas of
separating the forwarding hardware and the control software have greatly motivated the later development
of SDN.

2.2 Decoupling software from hardware

Different from the earlier solutions, SDN refactors the relationship between network devices and the
software control logic toward a fully decoupled architecture. The key argument is that the decision logic
should not be implicitly or explicitly hardwired in protocols distributed among network devices. The origin
of SDN can be traced back to the 4D project [13], which was established under the Stanford Clean Slate
Program [14 ] with ONRC support. The 4D project takes a clean slate approach to re-design network

44 Vol.25, No. 1, 2017 SCIENCE FOUNDATION IN CHINA



« Reviews -

control and management, by providing network operators with a direct interface to configure network
elements. Two other projects, SANE [15] and Ethane [ 16 ], both targeting enterprise networking, also
made key contributions toward the SDN era. SANE leverages logically-—centralized server to make all
routing and access control decisions. In Ethane, the admittance and routing are managed by the
cooperation between extremely simple flow-based switches and a centralized controller.

SDN took off when the initial version of OpenFlow [ 3] was released, which clearly defines the
communications interface between the control and forwarding layers of a software-defined network
architecture. Although originated from academia, the SDN’s power of decoupling and openness has quickly
attracted attention from industry, particularly user-driven organizations and cloud providers such as
Google, and Microsoft. The real-world demands on network control in the cloud datacenters pushes
forward the pervasive deployment and standardization of SDN, which has since become one of the most

actively growing fields in the networking community.
3 SDN architecture: From data plane to control plane

Figure 1 shows a generic architecture of software-defined networking, which consists of three layers and
two open communication inter faces. At a glance, the architecture is separated into two planes: (i) a data
plane that consists of simple forwarding switches, being responsible for data forwarding; (ii) a control
plane consisting of the controlling software, to be programmed with open APIs. Different from current
switches running complex protocols among multiple devices, the forwarding hardware in SDN data plane
simply forwards packets according to the rules that are set up by upper-layer controllers through software-
to-hardware communication interfaces (referred to as southbound). The logically centralized controller
functions as an OS over the networks with a set of application-layer programmable interfaces (referred to
as northbound) and transforms the service requirements into instructions for the data plane devices.

To understand the advantages of such decoupling, we can compare it with the relationship between
computer hardware and software. The hardware (e. g. , CPU versus switches) receives and executes a set
of standard instructions (e. g. , X86 instructions vs. OpenFlow protocols) and the software runs on a
platform (OS versus controller) via open APIs. Such a layered architecture enables device manufacturers
to focus on making fast forwarding hardware whereas software engineers to design easy-to-use program
API and tools, thereby making it easier to deploy new protocols, network services, complex middlebox
and network virtualization.

3.1 Data plane: Simple forwarding hardware

A switch serves as the corepacket forwarding hardware in the SDN data plane. Given one or multiple
flow-based tables, the switch performs actions simply according to the rules defined in the table entries.

As such, all or part of the control logic can be offloaded to remote controllers by installing rules with open

Figure 2 SDN switch abstraction.

SCIENCE FOUNDATION IN CHINA Vol.25, No. 1, 2017 45



« Reviews -

protocols. As illustrated in Fig. 2, the design space of flow based switch involves three components:
(1) the control interface, through which the controller configures the switch and receives events from the
switch; (ii) the state tables, which maintain counters to record the state of each flow entry, port, queue,
etc. ; and (iii) the flow tables, each entry of which consists of a match field describing the state (e. g. ,
port, VLAN, IP, and MAC) and a corresponding behavior (e. g. , send out/drop packets).

In early designs, notably OpenFlow v1. 0, a Single Match Table (SMT) was used, where a switch
matches packet headers against entries in a single flow table. It is easy for switch design and
programming. The entries, however, need to store every matching field defined in the table, and the rules
do not scale well given the limited size of a single TCAM. Multiple Match Tables (MMT) extends the
simple SMT by using multiple smaller match tables and processing matching through a multi-stage
pipeline. It has been incorporated into the latest OpenFlow specification, allowing flexible implementation
of the match tables based on network requirements.

Nevertheless, once the switch is deployed, it is difficult to reconfigure the match tables and add new
forwarding behaviors beyond the existing standards. As a refinement, RMT (Reconfigurable Match
Tables) has been suggested [17 ], which allows the number, widths and depths of match tables as well as
all header fields to be modified without changing the underlying hardware.

The following example shows how the packets are processed in the data plane in a microscopic view.
OpenFlow specifies that, when a packet arrives at a port, the switch extracts the packet header and
matches it against the match field [ 18]. If matching successfully, the switch will handle the packet
according to the action defined in the matched table entry and update the corresponding counters.
Otherwise, it will generate an event through the control interface to notify the controller to setup rules for
this packet. The performance of data plane mainly depends on the forwarding rate and delay, flow setup
rate and delay and northbound channel bandwidth. As the number of switches increases, the interaction
between switches and the centralized controller will bring significant overhead to the controller. To
alleviate this bottleneck, recent solutions advocate to offload part of the control logic to switches. For
example, DIFANE [ 19 ] keeps all traffic, including unmatched packets, in the data plane by directing
packets through intermediate switches that store the necessary rules. Deep packet buffer for bursty traffic
may also be implemented by using co-processing CPU in the switches to handle both control plane and data
plane traffic [207].

3.2 Control plane: Towards a networking operating system

As shown in Fig. 3, the SDN control plane aims to enable flexible support/control for switch hardware,
maintain such basic network functions as building network topology, managing device status, and routing,
and provide easy programmable interfaces and robust runtime environments for network services. With the
promise of being a networking operating system, a series of critical issues are to be answered in its design
space: (i) What kind of API should be offered and how to translate an application layer function into a set
of instruction messages for switches (ii) How should the service threads and northbound messages be

scheduled (iii) What type of programming language and runtime support are needed

Figure 3 Abstraction of SDN controller.

46 Vol.25, No. 1, 2017 SCIENCE FOUNDATION IN CHINA



« Reviews -

As the SDN controller is logically centralized, a straightforward solution is to deploy a single instance
controller. NOX [21], the first open source control platform based on OpenFlow, leverages a physical
centralized PC server to run network management applications written as centralized programs. To make
the controller more OS-like, Beacon [ 23] further provides build-in applications for commonly needed
functionalities and allows starting and stopping both existing and new applications.

The single instance solution however has obvious scaling limitations. By using multi-threaded 1/0
scheduling, Beacon achieves linear performance scaling. The rapid development of OpenFlow toward larger
scales drives the proposition of distributed solutions with multiple instances. A representative is Onix
[24], a distributed control platform that divides the network into multiple subsets, each being managed by
an instance as an aggregated single node when exposed to other controllers. Different from Onix, Kandoo
[25] uses a root controller to maintain the network-wide states and applies multiple local controllers to
manage local control applications. By distinguishing the responsibilities of the controllers, Kandoo reduces
control channel consumption by an order of magnitude compared to single-instance OpenFlow networks.

Today’s open source and commercial controllers are evolving toward multi-instance solutions with higher
performance and scalability, better reliability and easy-to-use APIs. Efficient status management using
databases (e. g. , Network Information Base [ 24] for Onix) is introduced to enhance the performance.
Dynamic controller assignment can improve the utilization of controllers and balance the workloads of
multiple instances [ 227]. Multi-path protocols have also been used to address connectivity failures, and the
traditional system recovery tools can be used to handle the controller failures [ 24 ], thus increasing the
reliability of the system. In Table 1, we summarize the state-of-the-art controller or controller platforms,

highlighting their control models, unique features, and limitations.

Table 1 Typical projects on SDN controller platform

) Deployment T
Projects Control model Owner Features/Limitations
language
NOX [21] Nicira Python/C+ + Low-level API
Murph McCaul
POX [26] u1:p Y craniey Python Low-level API, low performance
(UCB)
David Erickson Runtime  Modularity, basic  build-
Beacon [ 23] . Java . .
(Stanford) in services
Single - ‘ ;
MUL [27] . Kulcloud C C based, multi-threaded
Instance -
SNAC [28] Nicira C++ Web-based policy manager
Linea formance scalability, limited
Maestro [ 29] Zheng Cai (Rice) Java b;né;’[;)er ormance scatabiity, mite
O S s ki ith OpenFlow,
Floodlight [30] Big Switch Networks Java ben souree, working wi pentiow
tested and supported
Onix [24] Nicira C+-+ First distributed controller
Big Networks Distributed controller built on
Big Switch Networks
Controller [31] 16 Switeh etworks Java Floodlight
Community, Linux
OpenDaylight [32] Foundation Java Community-driven, open source
Collaborative
Multiple instances
C Standards-based protocols, providing
OpenContrail [33] Juniper Networks ot all the necessary components for
network virtualization
] Application-centri h,
Cisco ONE [34] Cisco N/A ppricationreentie approac
centralized visibility
VMware NSX [ 35] VMware N/A Complete network virtualization

SCIENCE FOUNDATION IN CHINA Vol.25, No. 1, 2017 47



« Reviews -

3.3 Bridging data and control planes

The southbound interface connects the software in the control plane and forwarding devices in the data
plane, aiming at providing secure and efficient communication protocols which can transmit a controller’s
request for rule modification or status information, and the switch’s synchronous feedback or asynchronous
event messages. The protocols defined between the data plane and the control plane create a standard for
designing upward-compatible switches, which can open the hardware industry and broaden the deployment
of general switch hardware.

The OpenFlow protocol [ 3] defines the first standard communication interface between the control and
forwarding layers of an SDN architecture. The OpenFlow channel is encrypted using TLS (Transport
Layer Security), and supports three message types, namely, controller-to-switch, asynchronous, and
symmetric. The controller-to-switch messages are initiated by the controller and used to modify or inspect
the state of the switch. Asynchronous messages are initiated by the switch and used to update the
controller of network events and changes to the switch state. Symmetric messages are initiated by either
the switch or the controller and then sent without solicitation

As part of the controller platform, the northbound interface, supported by the runtime environment of a
controller, enables programmability by exposing open functionality for network managers. Such open
application layer interfaces refine the roles of platform providers and application providers, and creates an
open environment for all kinds of network applications. Unlike the southbound interface, there is no
widely accepted standard and each platform has their own APIs. There are however two consensuses on
designing a good northbound interface: (i) API integrality, which allows users to flexibly request/manage
network resources and query about the state of network, and (ii) easy-of-use in providing high-level
functional abstraction for programmers

NOX [21] is the first platform that implements network services on OpenFlow by providing low-level
interfaces. To make programming easier, Frenetic [ 36 further combines a high-level network query
language for reading network state and a network policy management library for specifying packet
forwarding policy. Other open source controllers (e. g. , Floodlight, OpenDaylight) have also released the

development guidelines with detailed reference to each functionality.
4 SDN ecosystem and applications

As SDN decouples the software from hardware and provides open programmable interfaces, the technical
monopoly of traditional network device vendors would be broken. As a consequence, the standardization of
SDN has drawn significant attention of different organizations from all parts of the eco-system, consisting
of the research community (e. g. , ONS), the SDN adopters (e. g. » Google, and Microsoft) , the network
device manufacturers (e. g., Cisco, and ASRITA) and the open source communities (e. g. .
OpenDayLight). While these participators collaborate to form the future of SDN, each of them has unique
goals and interests on SDN standardization.

Fig. 4 lists the key players of the SDN eco-system, each of which has its respective contributions or
solutions. The research community hosts the annual Open Nerworking Summit (ONS) to gather the
leaders and innovators from all parts of the SDN ecosystem to share novel SDN ideas and solutions, and to
shed light on the future development. The primary SDN users, such as Google and Facebook, have
established a user-driven organization, Open Networking Foundation (ONF) [27], to define industrial
SDN standards, particularly those based on OpenFlow. These solutions/standards have been implemented
by hardware manufacturers, through releasing commercial infrastructures with programmable interfaces.
To summarize, the major SDN projects are listed in Table 1.

At the same time, the world’s top telecom operators have launched an industry-specification group.,
namely, Network Functions Virtualization (NFV) [37], to standardize software-based network functions
and services. Differing from SDN that describes a network architecture, NFV emphasizes on implementing

network functions that can run on industrial-standard server hardware. NFV can thus be viewed as a

48 Vol.25, No. 1, 2017 SCIENCE FOUNDATION IN CHINA



« Reviews -

complementation to SDN.,

Figure 4 SDN opens the networking eco-system.

With its open control interfaces, SDN can be applied in a variety of scenarios, especially for networks

that need easy management, complex middleboxes, global monitoring and centralized control (see Table

2). We now take a closer look at these typical applications in different scenarios and examine how SDN

benefits the networking systems.

Table 2 Representative applications of SDN

Scenario and

Name L Advantages Solutions Limitations
application
B4 [38] Datacenters, WAN  Achieving near 100% links SDN for centralized traffic Need hardware pro-
traffic engineering  utilization engineering gramming, bottlenecks
in transmitting protocol
packets
SWAN [39] Datacenters, WAN Carry 60% more traffic Centralized controller to  Limited functional inter—

traffic engineering

maintain the whole net-
work topology and Open-
Flow switches to deal with

forwarding

faces

SCIENCE FOUNDATION IN CHINA

(To be continued on the next page)

Vol.25, No. 1, 2017

49



« Reviews -

(Continued)

Scenario and

Name L. Advantages Solutions Limitations
application
DevoFlow [40] Datacenter network Offloading overhead for  Using rule cloning and local Lack of implementation
management, controller, 10—53 times actions for switch forward- for DevoFlow switches

Hedera [41]

Meridian [42]]

NetGraph [43]

OpenSketch [44]

SIMPLE [45]

OpenRadio [46]

SoftRAN [47]

ElasticTree [48]

flow scheduling

Datacenter network
management,

flow scheduling

Clouds

centers,

data—

network manage-

ment

Datacenter network

management
Traffic  measure-
ment

Traffic  engineer—
ing,

middlebox manage-

ment

Wireless network

Wireless Network

Datacenter,

green computing

fewer flow table entries
and 10—42

control messages

times fewer

Achieve 96% optimal bi-
section bandwidth and up
to 113% better perform-
ance than the static load-

balancing methods

Supports for a service-lev—
el model for application

networking in cloud

In large graphs, queries
can be answered in 100 ms
and consume memory less

than 100 M

The error rate is 0. 04%
with 600 kb memory in
switch, far less than early
solutions.

Easily programmable

Achieving 6 times load bal-

ancing improvement com-
pared with today’s deploy-
ments (reducing the maxi-
mum load while distributing
the traffic load more even-
ly), and 95% accuracy for

modified packets forwarding

Enabling operators to up-
the

completely

grade and optimize
network

in software

Effective load balancing, in-
terference management and
high throughput for wireless

local geographical network

Save up to 50% of net-
work energy for datacenter

workloads

ing rules and use sampling.
triggers and reports to col-

lect network statistics

3 main components: 1) el-
ephant detection, 2) de-
3)

mand  estimation,

placement heuristics

3 main logic layers: 1)
network model and APIs,
2) network orchestration,
3) interfaces to underlying

network devices

Complement edge weight

updates, insertions and
deletions for the proposed

TEDI algorithm

A simple three-stage pipe-
line in the data plane and a
measurement library in the

control plane

Using SDN-style control

for middlebox-specific
traffic steering.

Efficient data plane, uni-
fied resource management
strategy, rules for dynam-

ic packet modifications

A software abstraction
layer that exposes a modu-
lar and declarative inter-
face to program the PHY

and MAC layers

Abstracting the RAN as a

virtual ~big-base station
comprised of a central con-

troller and radio elements

Dynamically adjusting the
set of active network ele-

ments

and hardware verifica-

tion

Relying on traffic de-
mand estimation for N X

N host to host

Only for

like web

applications
services, no
consideration for multi-
networks,

ple virtual

scalability problem

Overhead of frequently
update path information
with algorithm of O(n*)

time complexity

More memory consump-
tion to achieve the same
error rate compared with

streaming algorithm

Not well supported for

the middlebox policy
changes.
The controller’s per-

formance overhead, la-

tency and correctness
for inferring new rules

remains to be improved.

No software defined RAN

controller.

Overhead

the devices in the net-

scales with

work.

Only for tree-based to-
pologies, relying on pri-
or knowledge of input

traffic.

50

Vol.25, No. 1, 2017

SCIENCE FOUNDATION IN CHINA



« Reviews -

4.1 Switch control and optimization

With the ability of controlling every single forwarding rule in the switches, SDN can make traffic
engineering much easier and more flexible. For instance, middleboxes (e. g. , network firewalls, and
Network Address Translation) have become a critical component in today’s networks due to the fact that
they provide crucial performance and network security. As existing middleboxes need manual
configurations or configuration scripts under specific situations, SDN can simplify middleboxes
management with automated programs. For example, SIMPLE [45] is an SDN-based policy enforcement
layer that enables network operators to deploy logical middlebox routing policies and automatically
translates them into the data plane forwarding rules. SIMPLE provides unified resource management to balance
the middlebox load in response to traffic changes and can automatically deal with dynamic packet modifications.

It is worth noting that measurement APIs are not well supported in state-of-the-art SDNs. Flow-based
measurements like NetFlow [54] and sFlow [ 55] consume significant amounts of resources. On the other
hand, sketch-based streaming algorithms lack generality to support a wide variety of measurement tasks.
To tradeoff generality and efficiency, OpenSketch [44 ] introduces a three-stage pipeline to support diverse
sketches for the generality in the data plane, and uses a resource allocator to divide each switch’s memory
according to the number of tasks. This well balances the memory consumption and the accuracy.

4.2 WAN traffic engineering for geo-distributed datacenters

Inter-Datacenter (Inter-DC) traffic, which is at the terabits/sec level, imposes remarkable challenges to
wide area networks (WANs) [38]. For consideration of transmission reliability, today’s cloud providers
usually deploy 2-3x over-provisioning bandwidth resource for Inter-DC traffic [ 38 ]. However, as the
resource allocation using MPLS TE ( Multiprotocol Label Switching Traf fic Engineering ) lacks
coordination among geo-distributed services in different datacenters, the average utilization of WAN links,
which is at most 40%—60% [39], have extremely poor efficiency.

SDN offers elegant solutions to improve network efficiency and reduce the over-provisioning cost, which
have been advocated by major cloud providers. SWAN [39], a WAN traffic engineering platform
developed by Microsoft, leverages centralized controller to maintain the global view of the network
topology, and applies OpenFlow switches to deal with forwarding state and rules updates. By frequently
updating the flow schedules in the data plane to match the traffic demand, SWAN can carry 60% more
traffic than the earlier solutions.

Another SDN solution, B4 [38], comes from Google’s datacenters across the planet. It constructs a
private WAN to achieve fault tolerance, cost efficiency and required control that can hardly be realized by
traditional WAN architectures. The B4 architecture consists of three logical layers: a global controller and
site controller for each datacenter to support centralized traffic engineering, and customized switches to
integrate the OpenFlow functionality. B4 can dynamically allocate bandwidth or shift application demands
to handle competing demands during resource constraint and link failure, driving links to near full
utilization as well as providing full control on edge servers and networks.

4.3 Intra-datacenter network management

Intra-datacenter networks are shared among a large number of applications/VMs. It is critical to provide
global and flexible management tools for datacenter operators. Compared to traditional networks with only
limited configurable interfaces, SDN can provide easier network management, in two critical aspects:
(1) centralized visibility, which reduces the cost of setting up every single switch; (ii) abundant
programmable inter faces , which enables automatic monitoring and control in a network service.

The former focuses on underlying flow scheduling for different traffic patterns in datacenters. Compared
with a WAN, mice flows are common in datacenter networks [ 53], and therefore it needs much more data
and-control plane communication and statistic collecting is not cost-effective withOpenFlow. For this
particular traffic pattern, DevoFlow [40] introduces rule cloning and local actions to offload the control
overhead to a switch, and extends OpenFlow with new threshold-based triggers to improve the efficiency
of statistic collection. Hedera [ 41 ] focuses on flow scheduling in datacenter networks. To avoid congestion

resulting from existing Equal-Cost Multipath Routing ( ECMP ), it seamlessly integrates three

SCIENCE FOUNDATION IN CHINA Vol.25, No. 1, 2017 5l



« Reviews -

components: elephant detection for finding large flows using statistics collected by underlying SDN
switches; demand estimation designed for finding flows’ overall fair bandwidth allocation; and placement
heuristic to find near-optimal placement solutions.

The latter focuses on providing upper-layer control interfaces over the network. It has been argued that
a service-level network model and policy abstractions are integral parts of cloud applications [42]. To this
end, an SDN controller platform, Meridian [42], is proposed, integrating three logic layers, namely, an
abstract API layer, a network orchestration layer, and a network driver layer. Another solution,
NetGraph [43], is a shared graph library that supports network management operations (e. g. , network-
aware VM placement, and real time network monitoring) in dynamic cloud network topology. It provides
scalable and fast graph query with open APIs for receiving topology updates and dynamically computing
graph queries. With programmable interfaces, cloud providers are able to deploy their bandwidth allocation
policies in SDN data centers, so as to provide predictable network performance for applications/VMs in
clouds [49—52]].

Energy efficiency of large-scale datacenters has drawn critical attention in recent years, too. With SDN
interfaces for dynamically allocating network resources, network operators are able to flexibly use network
devices according to the traffic load. This complements the existing works that mainly focus on low-
powered hardware manufacturing or dynamic right-sizing for servers. An example is ElasticTree [ 48],
which reduces datacenter energy cost by focusing on the networking elements. It computes the network
subset that can satisfy the demand of current data center workload, generates SDN routing rules, and
shuts down the idle networking elements to create such a power-saving network subset. For a wide array

of traffic patterns, ElasticTree can save energy ranging from 25% to 62%.
S Conclusion and future directions of SDN

So far we have surveyed the state-of-theart of software-defined networking (SDN), including
architecture design, typical applications and industrial open source/commercial projects. We have
summarized the issues, challenges and trends of the SDN architecture design space for control plane, data
plane and communication interfaces, and explored the representative SDN application scenarios with
cutting-edge solutions.

SDN has shown great potentials in improving network management/measurement for diverse networks.
Besides the use in industry, SDN also offers an open platform for the education of networking architecture
and protocols itself. A typical computer system course involves many inside projects; yet this can hardly be
done for networking courses nowadays, given that the existing network devices cannot be easily
programmed for self-designed network services or protocols. This could be overcome by SDN, which
enables the design of new networking functions by students with a customizable control plane and visible
packet forwarding in the data plane. It will certainly offer students the first-hand experiences, preparing
them better for related research or product development in their career.

Despite its significance in the networking or even the whole IT sector, SDN is still in its infancy and
both opportunities and challenges are arising. We now examine the critical challenges in designing and
implementing SDN and highlight potential directions toward the future of SDN.

5.1 Opening SDN architecture

Targeting at a new networking eco-system of good performance and ease-of-use functionality,
scalability, reliability, simplicity and generality remain great challenges for the SDN development and
deployment. So far there lacks a universally accepted SDN platform and very few productive SDN
applications have been deployed in the real world.

Scalability and reliability of control platform. An import challenge in implementing an SDN platform is to
make it scalable with the growth of network devices, while maintaining it logically centralized. To improve
the controller’s scalability, newer solutions (e. g., Onix [ 24] and Kandoo [ 25]) are changing towards

physically distributed controllers, since one single server can handle limited flows at a time, and it also

52 Vol.25, No. 1, 2017 SCIENCE FOUNDATION IN CHINA



« Reviews -

suffers from single point failures. Multiple controller instances potentially achieve better scalability and
reliability; yet the associated complexity can be higher, and such new problems as controller placement,
task allocation and scheduling, and communications among the controllers are to be addressed [56].

Simplicity and generality of programmable interface., As SDN promises to enable easy programmability
for network managers, it is necessary to design a simple and general southbound interface supporting the
deployment of network applications on various SDN forwarding hardware. We have seen growing interest
in designing high-level languages for SDNs [57, 60]. To overcome the low developer productivity, high-
level API and policy abstraction have been used to make application programming simple [42]. The
runtime ability for starting and terminating applications have also been supported to make controller OS-
like. Still, as compared conventional programming languages that have been closely examined in the past
decades, these new SDN-based languages are still in early stages, whose foundations are yet to be built,
verified, and optimized theoretical and practically.

5.2 Opening network functionality with SDN

Cloud datacenters. Different from the Internet, data center networks are a fabric of homogeneous
servers, connected by high throughput network devices in specific topologies. Such a design well
accommodates centralized global control and monitoring. On the other hand, datacenter networks are
shared among different users or applications, which need complex access control, large numbers of
VLANS, strict performance isolation and accurate monitoring. These can hardly be implemented with
traditional network hardware with limited programmability. Google and Microsoft have both successfully
deployed SDN-based global datacenter WANs [ 38, 39 ], which significantly improve link utilization
between datacenters. For intra-datacenter networks, SDN can be deployed for flow scheduling, traffic
monitoring, network configuration and performance isolation. Existing works (e. g. , [38, 41, 42]) have
focused on dynamic flow scheduling for high throughput and load balancing. Datacenter monitoring [ 61 ]
and network performance isolation for VMs remain critical issues to be examined in the future research.

Enterprise networks and campus networks. Enterprise networks, campus networks or ISP networks are
highly dynamic environments with mass of events and complex access control. Their users frequently join
or leave the network, demanding flexible VILAN configuration for user authentication and traffic
monitoring. With high level interfaces on configuring forwarding rules, SDN can improve management and
security for these networks. A representative real-world example is Procera [ 62, 61 ], which supports the
campus network configuration with a high-level language. Another platform, SIMPLE [45], simplifies
middlebox traffic steering by providing configurable interfaces. These existing solutions are designed for
specific contexts; more SDN practices and general implementations are to be explored to improve the
management in these networks.

5.3 Reshaping wireless network design

It has been widely accepted that the future Internet is moving towards wireless mobile networking, and
today’s shipments of such wireless mobile terminals as laptops, smartphones, and tablets are quickly
surpassing that of the fixed PCs. As wireless protocols evolve rapidly, operators and vendors need to
continuously update the software and network devices to handle new traffic class from new wireless mobile
applications. In the past, the protocol definition was closely coupled with the hardware, so that protocol
changes may require replacing the base stations, which leads to excessively higher expense in today’s
rapidly changing and dense networks.

To overcome this drawback, OpenRadio [46] presents a novel design for a programmable wireless data
plane, whose core component is a software abstraction layer that exposes a modular and declarative
interface to program the PHY and MAC layers. By decoupling wireless protocol definitions from the
hardware and decomposing the wireless protocols into separate processing and decision plane component,
OpenRadio makes base stations remotely programmable to enable vendors and operators to upgrade and
optimize the network completely in software.

Another fundamental problem in today’s radio access network is how to best utilize and manage limited

spectrum to provide wide-area wireless connectivity to mobile devices. The performance of existing

SCIENCE FOUNDATION IN CHINA Vol.25, No. 1, 2017 53



« Reviews -

distributed coordination algorithms does not scale well, as they need to work with a large number of base
stations, especially in terms of latency [ 47 ]. Based on SDN, SoftRAN [47 ] fundamentally reshapes the
radio access layer, abstracting the radio access networking in a local geography as a virtual big-base station
comprised of a central controller (a logically centralized entity) and radio elements (the base stations).
With the knowledge of the entire network state, the controller can recognize the edge users easily and find
the best allocation method for load balancing and utility optimization.

5.4 Network OS: Who will be the next winner

A Networking Operating System refers to software as an operating system that operates the network/
link layer functions (e. g. » MPLS) or provides network services (e. g. » VPN). Early network OSes, like
NetW are whose popularity can be traced back to the 1990s, ran on servers in a LAN and providednetwork
services based on existing protocols. Targeting traditional enterprise services (e. g. , file sharing, print),
they can hardly be employed to operate large-scale cloud datacenters or to support network
programmability. Another type of Network OSe, including JUNOS, and Cisco 10S, is embedded in a
router to operate the functions in layer 3 of the OSI model. These embedded Network OSes with
customizable functions emerged in year 2000 and have since led the trend of opening network for
programmable interfaces. Nevertheless, the embedded software only runs on customized infrastructure of
their respective companies in a closed system. Few of them have successfully built an open networking eco-
system, for the closed functions can hardly meet the requirements of network services from various generic
users.

Looking back into the past six years, however, SDN has successfully brought together the members of
the network eco-system by building an open environment, where the fundamental concepts, tools and
scientific methods are provided to open computer networks. Given the rapid growth of cloud computing
and big data, which urgently demand open and flexible networking, network OSes harnessing SDN will
undoubtedly be the next hot spot in the IT industry. Again, analogical to the proliferation of PC OS
market in which many famous trademarks (Linux, Microsoft Windows, Apple iOS, etc. ) have been 4born
in the past decades, we will surely witness the involvement of both IT giants and new startups in this next

wave competition of the network OSmarket, and witness the birth of new era’s winners and their legends.
Acknowledgments

This study was supported in part by a grant from the National Natural Science Foundation of China
(NSFC) (Grant Nos. 61370232 and 61520106005).

References

[1] Software— Defined Networking — The New Norm for Networks. ONF White Paper, 2013.
[2] Open Networking Foundation. https://www. opennetworking. org/.
[3] McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Shenker S, and Turner J. OpenFlow: enabling
innovation in campus networks. ACM SIGCOMM Computer Communication Review, 2008, 38(2) :69—74.
[4] Market Report: SDN Market Sizing. Plexxi, Lightspeed Venture Partners and SDNCentral, April, 2013.
[5] SDN Shakes Up the Status Quo in Datacenter Networking. IDC, December 19, 2012. http://www. idc. com/getdoc. jsp containerld =
prUS23888012.
[6] Nunes BAA, Mendonca M, Nguyen XN, Obraczka K, Turletti TA. Survey of Software— Defined Networking: Past, Present, and Future
of Programmable Networks. IEEE Communications Surveys and Tutorials.
[7] Campbell AT and et al. A survey of programmable networks. ACM SIGCOMM Computer Communication Review, 1999,
[8] Feamster N, Rexford J, Zegura E. The Road to SDN: An Intellectual History of Programmable Networks.
[9] Scott— Hayward S, O’Callaghan G, Sezer S (2013, November). Sdn Security: A Survey. In Future Networks and Services (SDN4FNS) ,
2013 IEEE SDN for (pp. 1—7). IEEE
[10] Google IPv6 statistics. http://www. google. com/ipv6/statistics. html.
[11] Campbell A, Katzela I, Miki K, and Vicente J. Open signaling for ATM, Internet and mobile networks. ACM SIGCOMM Computer
Communication Review, 1999.
[12] Biswas J, Lazar AA, Huard JF, Lim K, MahjoubS, Pau LF, Suzuki M, Torstensson S, Wang W, Weinstein S. The IEEE P1520
Standards Initiative for Programmable Network Interfaces. IEEE Communications Magazine, 1998, 36(10):64 — 70.

54 Vol.25, No. 1, 2017 SCIENCE FOUNDATION IN CHINA



« Reviews -

[13] Greenberg A, Hjalmtysson G, Maltz D, Myers A, Rexford J, Xie G, Yan H , Zhan J, Zhang H. A clean slate 4d approach to network
control and management. ACM SIGCOMM Computer Communication Review, 2005, 35(5):41—54,

[14] Clean Slate Program. http://cleanslate. stanford. edu/

[15] Casado M, Garfinkel T, Freedman M, Akella A, Boneh D, McKeown N, Shenker S. SANE: A Protection Architecture for Enterprise
Networks. In Usenix Security Symposium, 2006.

[16] Casado M, Freedman M, Pettit J, Luo J, McKeown N, Shenker S. Ethane: Taking control of the enterprise. ACM SIGCOMM
Computer Communication Review,2007, 37(4).1—12.

[17] Bosshart P, Gibb G, Kim H, Varghese G, McKeown N, Izzard M, Mujica F, Horowitz M, “Forwarding metamorphosis: Fast
programmable match—action processing in hardware for SDN,” in ACM SIGCOMM, 2013.

[18] Open Flow Switch Specification 1. 4. 0. Open Networking Foundation, 2013.

[19] Yu M, Rexford J, Freedman M, Wang J . Scalable flow— based networking with DIFANE. In ACM SIGCOMM, 2010.

[20] Lu G, Miao R, Xiong Y, Guo C. Using CPU as a Traffic Co— processing Unit in Commodity Switches. In ACM HotSDN, 2012.

[21] Gude N, KoponenT, Pettit J, Pfaff B, Casado M , McKeown N, and Shenker S, “NOX: towards an operating system for networks,” in
ACM SIGCOMM, 2008.

[22] Wang T, Liu FM , Guo J, Xu H, “Dynamic SDN Controller Assignment in Data Center Networks: Stable Matching with Transfers”, in
Proc. of IEEE INFOCOM, San Francisco, CA, USA, April, 2016.

[23] Erickson D, “The beacon openflow controller,” in ACM HotSDN, 2013.

[247] Koponen T, Casado M, Gude N, Stribling J, Poutievski L., Zhu M, Ramanathan R, Hama T, Shenker S, “Onix: A distributed control
platform for large— scale production networks,” in USENIX OSDI, 2010.

[25] Hassas Yeganeh S, Ganjali Y, “Kandoo: A framework for efficient and scalable offloading of control applications,” in ACM
HotSDN, 2012.

[26] POX. http://www. noxrepo. org/pox.

[277] Mul Open flow controller. http://sourceforge. net/projects/mul/.

[28] SNAC. https://github. com/bigswitch/snac/.

[29] Zheng C, Alan LC, Eugene TS. Ng Maestro: A system for scalable OpenFlow control. Technical Report TR10 — 08, Rice
University, 2010.

[30] Floodlight. http://www. projectfloodlight. org.

[31] Big Network Controller. http://www. bigswitch. com/products/SDN— Controller.

[32] OpenDaylight. http://www. opendaylight. org/.

[33] OpenContrail. http://opencontrail. org/.

[34] Cisco Open Network Environment. http://www. cisco. com/web/solutions/trends/open network environment.

[35] VMware NSX. http://www. vmware. com/products/nsx/.

[36] Foster N, Harrison R, Freedman M]J, Monsanto C, Rexford J, Story A, Walker D. “Frenetic: A network programming language,” in
ACM SIGPLAN ICFP, 2011.

[37] Network Functions Virtualisation: An Introduction, Benefits, Enablers, Challenges & Call for Action. OFV white paper, 2012,

[38] Jain S, Kumar A, Mandal S, Ong J, Poutievski L, Singh A, Venkata S, Wanderer J, Zhou J, Zhu M, Zolla J, Hlzle U, Stuart S,
Vahdat A. “B4: Experience with a globally—deployed software defined WAN,” in ACM SIGCOMM, 2013.

[39] Hong CY, Kandula S, Mahajan R, Zhang M, Gill V, Nanduri M, WattenhoferR. “Achieving high utilization with software — driven
WAN,” in ACM SIGCOMM, 2013.

[40] Curtis AR, Mogul JC, Tourrilhes J, Yalagandula P, Sharma P, and Banerjee S . “DevoFlow: Scaling flow management for high —
performance networks,” in ACM SIGCOMM, 2011.

[41] Al—Fares M, Radhakrishnan S, Raghavan B, Huang N, Vahdat A. “Hedera: Dynamic flow scheduling for data center networks,” in
USENIX NSDI. 2010.

[427] Banikazemi M, Olshefski D, Shaikh A, Tracey J, and Wang G. “Meridian: An SDN platform for cloud network services,” IEEE
Communications Magazine, Feb 2013.

[43] Raghavendra R, Lobo J. Lee KW. “Dynamic graph query primitives for SDN — based cloud network management,” in ACM
HotSDN, 2012.

[44] Yu M, Jose L, and Miao R, “Software defined traffic measurement with OpenSketch,” in USENIX NSDI, 2013

[45] Qazi Z, Tu C, Chiang L, Miao R, Sekar V, Yu M, “SIMPLE — fying middlebox policy enforcement using SDN,” in ACM
SIGCOMM, 2013.

[46] Bansal M, Mehlman J, Katti S, and Levis P, “OpenRadio: A programmable wireless dataplane,” in ACM HotSDN, 2012,

[47] Gudipati A, Perry D, Li LE, Katti S. “SoftRAN; Software defined radio access network,” in ACM HotSDN, 2013.

[48] Heller B, Seetharaman S, Mahadevan P, Yiakoumis Y, Sharma P, Banerjee S, McKeown N, “ElasticTree; Saving energy in data center
networks,” in USENIX NSDI, 2010.

[49] Guo J, Liu FM, Tang HW, Lian YN, Jin H, Lui JCS, “Falloc: Fair Network Bandwidth Allocation in laaS Datacenters Via a Bargaining
Game Approach”, in Proc. of IEEE ICNP, October, Goettingen, Germany, 2013.

[50] Guo J, Liu FM, Huang XM, Lui JCS, Hu M, Gao Q, Jin H, “On Efficient Bandwidth Allocation for Traffic Variability in Datacenters”,
in Proc. of IEEE INFOCOM, April, Toronto, 2014,

[51] Guo J, Liu FM, LuiJ, Jin H, “Fair Network Bandwidth Allocation in IaaS Datacenters via a Cooperative Game Approach”, IEEE/ACM
Transactions on Networking (ToN), Volume 24, Issue 2, April 2016.

[52] Liu FM , Guo] , Huang XM , Lui J. “eBA: Efficient Bandwidth Guarantee under Traffic Variability in Datacenters”, to appear in IEEE/
ACM Transactions on Networking (ToN), 2016.

[53] Kandula S, Sengupta S, Greenberg A, Patel P, Chaiken R. “The nature of data center traffic; measurements &. analysis,” in ACM IMC,
20009.

[54] Cisco NetFlow. http://www. cisco. com/go/netflow.

[55] Wang M, Li B, Li Z. sFlow: Towards resource— efficient and agile service federation in service overlay network. In IEEE ICDCS, 2004.

[56] Heller B, Sherwood R, and McKeown N, “The controller placement problem,” in ACM HotSDN, 2012.

SCIENCE FOUNDATION IN CHINA Vol.25, No. 1, 2017 55



« Reviews -

[57] Foster N, Freedman MJ, Guha A, Harrison R, Katta NP, Monsanto C, Reich J, Reitblatt M, Rexford J, Schlesinger C, Story A,
Walker D. “Languages for software—defined networks,” IEEE Communications Magazine, 2013.

[58] Voellmy A, Wang JC, Yang YR , Ford B, Hudak P. “Maple: Simplifying SDN programming using algorithmic policies. ” In SIGCOMM,
2013.

[59] Ferguson A, Guha A, Liang C, Fonseca R, Krishnamurthi S. “Participatory networking: An API for application control of SDNs,” in
ACM SIGCOMM, 2013.

[60] Monsanto C, Foster N, Harrison R, Walker D. “A compile and run— time system for network programming languages.” in ACM
SIGPLAN—SIGACT POPL, 2012.

[61] Moshref M, Yu M, Govindan R. “Resource/Accuracy tradeoffs in software defined measurement,” in ACM HotSDN, 2013.

[62] Kim H, Feamster N. “Improving network management with software defined networking.” IEEE Communications Magazine, Feb 2013.

Liu Fangming ( )is a Professor in the School of Computer Science and
Technology, Huazhong University of Science and Technology, Wuhan, China.
He received the B. Eng. degree from the Department of Computer Science and
Technology, Tsinghua University, Beijing, and the Ph. D. degree from the
Department of Computer Science and Engineering, Hong Kong University of
Science and Technology, Hong Kong. From 2009 to 2010, he was a visiting
scholar at the Department of Electrical and Computer Engineering, University of
Liu Fangming Toronto, Canada. He is selected into the National Top-Notch Young Talents
Program of National High-level Personnel of Special Support Program issued by the Central Organization
Department of CPC, and he is named the CHUTIAN Scholar of Hubei Province, China. He is one of the
Youth Scientists of the National 973 Basic Research Program Project on Software-defined Networking
(SDN)-based Cloud Datacenter Networks, which is one of the largest SDN research projects in China.
From 2012 to 2013, he was invited as a StarTrack Visiting Young Faculty in Microsoft Research Asia
(MSRA), Beijing. In 2016, he served as an NSFC review panel committee expert for general funding
projects, and invited to be an expert for reviewing candidates of CCF Outstanding Doctoral Dissertation
Award.

His research interests include Cloud Computing and Data Center, Green Sustainable Computing and
Communications, SDN/NFV and Virtualization, Internet Content Distribution and P2P Systems. He is a
PI or co-PI of several NSFC grants and key projects on large-scale and energy-efficient datacenters, a PI of
Huawei collaboration project on OpenStack based hybrid clouds, as well as involved in a National 863
Project on Inspur cloud server systems as a key member. He has a series of publications on Proceedings of
the IEEE (ESI highly cited paper), JSAC, TON, TPDS, TC, ACM/IFIP/USENIX Middleware,
INFOCOM, ICDCS, ICNP, ACM NOSSDAV, ACM e-Energy, ACM SIGMETRICS, etc. He received
the ACM Wuhan Rising Star Award, and is a corecipient of two Best Paper Awards from IEEE
GLOBECOM 2011 and IEEE TUCC 2012, respectively; as well as a co-recipient of Best Paper Candidates
of IEEE/ACM IWQoS 2016 and IC2E 2016. In particular, several key algorithms and system prototypes
developed by him and his team have been deployed in real-world systems with a large number of users.

As an IEEE senior member and CCF senior member, he was a Guest Editor for the IEEE Network
Magazine and IEEE Systems Journal , an Associate Editor for the Frontiers of Computer Science , and the
Editor-in-Chief of EAI Endorsed Transactions on Collaborative Computing. He also served as the Poster/
Demo Co-Chair of ICNP 2016 and the Publicity Co-Chair of IEEE/ACM IWQoS 2017, INFOCOM 2017
SmartCity Workshop program co-chair, CCF NASAC 2015 program vice-chair, and the TPC for IEEE
INFOCOM 2013—2017, ICDCS 2015—2017, ICNP 2014, ACM Multimedia 2014 and 2016, ACM e
Energy 2016—2017, IEEE/ACM ITWQoS 2016—2017, etc. He is also an ACM China SIGCOMM Chapter

committee member.

56 Vol.25, No. 1, 2017 SCIENCE FOUNDATION IN CHINA



