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Abstract Functional saccharide is a general term that is often used to refer to the functional
oligosaccharides, functional saccharide alcohols, and functional dietary fibers. These functional saccharides
exhibit some health benefiting effects, such as having low calorie, preventing dental caries, and regulating
intestinal disorders. Functional saccharides are widely used in food, health products, and the healthcare
fields. The preparation of functional saccharides is accomplished mainly through reactions involving
transglycosylation, isomerization, or hydrolysis catalyzed by glycosyltransferases, saccharide isomerases,
and glycohydrolases, respectively. However, the poor catalytic properties of natural enzymes and low
fermentation yields have restricted the large-scale industrial production of functional saccharides.
Therefore, molecular modification and efficient expression of key enzymes for functional-saccharide
preparation are very important for promoting the low-cost large-scale production of functional saccharides.
In this report, the recent advances in functional optimization and expression preparation of enzymes related
to functional saccharides are reviewed.
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1 Introduction

With the rapid economic development and continuous improvements in living standards, foods with
nutritional values, desirable flavors, and health benefiting functions have been gradually accepted by
consumers and become a new trend in the food industry. Some saccharides, such as oligosaccharides,
dietary fibers, and saccharide alcohols, are the special food components exhibiting special bioactive
physiological effects. Functional oligosaccharides cannot be digested and absorbed by human
gastrointestinal tract and, instead, directly enter into the large intestine, which will be digested by
bi fidobacteria. As a result, functional oligosaccharides are also considered to possess low calorie contents,
which prevents the rapid increase of blood sugar and blood lipid levels [1]. Functional saccharide alcohols
refer to polyhydroxyl alcohols obtained through hydrogenation of saccharides, resulting in polyol
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sweeteners, predominantly composed of xylitol [ 2], sorbitol [3], and maltitol. Functional saccharide
alcohols have multiple functions. For example, they are difficult to be fermented by acid-producing
bacteria, and can prevent dental caries. Additionally, their metabolic process does not interfere with the
function of pancreatic islets and glucose metabolism, and they can promote the proliferation of beneficial
intestinal bacteria and improve intestinal function. Dietary fibers refer to the sum of the food components
that can not be digested by human digestive enzymes. In recent years, dietary fibers have been considered
the seventh nutrient and a bioactive ingredient besides the water, carbohydrates, proteins, fats, minerals,
and vitamins, which is often referred to as the “life oasis”.

In the preparation of functional saccharides, substrate hydrolysis, transglycosylation, and isomerization
are the main procedures that are mainly catalyzed by biocatalysts/enzymes. Therefore, enzymes are the
key factor in production of functional saccharides. In this context, the characterization, functional
optimization, and efficient preparation of novel enzymes for functional saccharide preparation are of great
significance for promoting the modernization of the production of functional saccharides so as to fit the
rapid requirement of the public health industry.

Key enzymes involved in the preparation of functional saccharides include glycosyltransferases [4],
saccharide isomerases [5], and glycohydrolases [6]. Glycosyltransferases for functional saccharide
preparation include glucosyltransferase, galactosyltransferase, and fructosyltransferase, which transfer
glycosyl groups from the donor to the acceptor. Saccharide isomerases include glucose isomerase, mannose
isomerase, and sucrose isomerase, which enable the conversion of saccharide isomers. Glycohydrolases
refer to enzymes, including various amylases and glucosidases, capable of degrading cellulose, starch, or
other polysaccharides to monosaccharides, disaccharides, and even polysaccharides. Herein, we make a
review of the recent advances in functional optimization and expression of enzymes preparation related to
the functional saccharide production.

2 Molecular modification of enzymes

The key enzymes for functional saccharide production are usually the multifunctional enzymes capable of
catalyzing saccharide hydrolysis, transglycosylation, and/or isomerization simultaneously. In addition,
they do not exhibit the substrate specificity, instead, they are capable of producing complex and
changeable products. Therefore, natural enzymes usually need to be modified to enhance their catalytic
performance in order to improve their efficient synthesis of specific functional saccharides. Bioinformatics
analysis of existing natural enzymes in combination with molecular biology techniques, such as directed
evolution, site-directed mutagenesis, and truncated expression, are used to design and modify natural
enzymes to achieve the desirable properties necessary for better and wider utilization.

2.1 Directed evolution

Directed evolution refers to the act of mimicking natural evolutionary mechanisms (e. g., random
mutation, recombination, and natural selection) so as to construct a library containing numerous mutants.
In combination with selection methods related to a pre-determined evolutionary direction, this method can
be used to directionally screen and select valuable non-native protein molecules in order to obtain mutants
exhibiting optimized performance. The most commonly used strategies for directed evolution of enzymes
include error-prone polymerase chain reaction (PCR) [7] and DNA shuffling [ 8].

Error-prone PCR generates a large number of random mutants containing a certain gene through
mismatches, from which the desired individuals are selected. DNA shuffling uses DNAases to hydrolyze
the parent gene or mutated gene to produce random fragments, which are then subjected to PCR without
primers to generate a large number of mutants. Table 1 lists the enzymes with excellent performance
obtained using error-prone PCR and in wvitro homologous-recombination technology. Shim et al. [9]
screened a M234T/F2591/V591A mutant of cyclodextrin (CD) glucosyltransferase (CGTase) by error-
prone PCR, resulting in an enzyme exhibiting a 10-fold decrease in cyclization activity and a 15-fold
increase in hydrolyzing activity. The addition of CGTase reduced the retrogradation rate of bread by as
much as the level that was observed by the commercial anti-staling enzyme novamyl during a 7-day storage
at 4 °C. No CD was detected in bread treated with CGTase, whereas 21 mg of CD per 10 g of bread was
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produced in bread treated with wild-type CGTase. Rentschler et al. [10] constructed a mutant library of -
galactosidase by error-prone PCR and obtained a mutant exhibiting a >>2-fold increase in specific activity.
Tang et al. [11] screened two highly thermostable mutants after three rounds of shuffling of maltogenic
amylase from Bacillus thermoalkalophilus ET2, each having optimal reaction temperatures of 80 °C,
which was 10 °C higher than that of wild-type. To create xylanase variants possessing both thermal and
alkaline stability in a single enzyme, Stephens et al. [12] used one mutant with high thermostability and
the other with high alkaline stability from Thermomyces lanuginosus xylanase DSM 5826 (xynA) as
templates for DNA shuffling, resulting in the screening of two xylanase mutants (S340 and S325) with
both thermal and alkaline stability. Melzer et al. [13] obtained a CGTase mutant library of alkaliphilic
Bacillus sp. G-825-6 by a combination of error-prone PCR and DNA-shuffling technology, resulting in a
mutant with seven substituted amino acids. The CDs-synthesizing activity of the mutant was increased by
1. 2 fold, and the product ratio of CD; : CDg shifted to 1 ¢ 7 as compared with 1 ¢ 3 from the wild-type
enzyme. Another CGTase variant with nine amino acid substitutions was active at a pH range of 4. 0 to 10.
0. Compared with the wild-type enzyme, which was inactive at pH<(6. 0, the mutant retained 70% of its
CD8-synthesizing activity at pH 4. 0.

Table 1 Enzymes obtained using error-prone PCR and DNA shuffling
1 d S d struct
mprove Enzyme Site Improvements ceondary s .ruc are Ref.
property or subsite
Selectivity Cyclodextrin M234T/ The hydrolyzing activity of the —+1,+2 [9]
Glucosyltransferase  F2591/V591A mutant was increased 15-fold, and
the cyclization activity was reduced
10-fold as compared with wild-type
Specific activity — B-Galactosidase S432T/A762V The specific activity of the mutant o-helix, Loop [10]
was increased 2-fold
Thermo-stability Maltogenic amylase N147D/F195L/ The optimal temperature was 10 °C  Loop, a-helix, [11]
N263S/D311G/ higher than that of wild-type, and p-sheet
A344V/ the half-life was 20-fold greater
F397S/N508D than that of wild-type at 78 °C.
pH stability Cyclodextrin E39K/T66S/L.71P/ Compared with the wild-type Loop. B-sheet [13]
Glucosyltransferase  T1101L/S461G/ enzyme, which is inactive below pH
E472G/V605A/ 6.0, the mutant retained 70 % of its
N606K/R684H CD8-synthesizing activity at pH 4. 0
Thermostability ~ Xylanase A54T/K30E/ S340 retained 54% stability at Loop, B-sheet [12]
and pH stability W40R/T57A/K80R 80 °C and 60% stability at pH 10;
(S325), W40R/ S325 displayed 85% stability at
T57A/K80R(S340) 80 °C and 60% stability at pH 10
Product Cyclodextrin N187D/A248V/ Increased y-cyclodextrin specificity; —+1., +2 [13]
specificity Glucosyltransferase  V252E/H352L/ the product ratio of CD7 CD8
D465G/ changed from1: 3 to1:7
E560V/E687G

2.2 Site-directed mutagenesis

Site-directed mutagenesis is an important approach to modify enzyme genes. Enzymes with excellent
properties can be obtained after experimental validation through the introduction of beneficial mutations at
specific sites, with mutations at either single or multiple sites. Site-directed mutagenesis is a rational
design that can only be successfully implemented on the basis of a full understanding of enzyme structure
and function, as well as their catalytic mechanisms and active site(s). Table 2 lists the enzymes with
desirable properties obtained by site-directed mutagenesis. The improved properties of these enzymes
include increased thermostability and substrate conversion, selectivity, and product specificity. To

improve the enzyme thermostability, Duan et al. [14] introduced amino acids with high B-factors into sucrose
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Table 2 Enzymes with excellent properties obtained by site-directed mutagenesis

Secondary
Improved . structure,
Enzyme Site Improvements . Ref.
property subsite,
or domain
Thermostability ~ Sucrose isomerase E175N,K576D, The half-lives of E175N, K576D, and loop [14]
K174D,G176D, E175N/K576D mutants were 2. 30-,
S575D and N577K 1.78-, and 7. 65-fold longer than that of
the wild-type enzyme at 45 °C
Pullulanase D503F,D437H, The thermostability of the D437H/ loop [15]
D503Y,D437H/ D503Y double mutant increased to an
D503Y optimal temperature 60 °C, and the half-
life at 60 ‘C was 4. 3-fold longer than that
of the wild-type enzyme
Substrate L-arabinose isomerase K320R/N475K, D-tagatose conversion by the C450S/ Loop. o [16]
conversion V408A/N475K, N475K mutant was 20% higher than that helix, B-
K428N/N475K, of wild-type sheet
C450S/N475K
B-Galactosidase F359Q,F441Y Yields of GOS reached 50. 9% for the —1, +1 [23]
wild-type enzyme, 58.3% for F359Q, site
and 61.7% for F441Y
Selectivity maltooligosyltrehalose  Y290F, Y367F, Compared with  wild-type MTSase, -+1 site [18]
synthase (MTSase) F405Y and Y409F MTSase F405Y  showed  decreased
hydrolysis: transglycosylation rations,
whereas MTSases Y290F, Y367F, and
Y409F showed increased ratios.
a-Glucosidase Asn694 was replaced N694F and N694W mutations led to the =42 site [19]
by Ala, Leu, Phe accumulation of larger amounts of
and Trp isomaltose and isomaltotriose relative to
those achieved with the wild-type enzyme
Product Sucrose isomerase Q299E, AQ299 and The Q299E mutant increased the Not [20]
specificity Y296D conversion rate of isomaltulose from available
90.28% to 94. 16% ., Q299E. AQ299,
and Y296D showed significant effect on
product specificity
Branching enzyme M349T,M3498S, M349T and M349S showed 24. 5% and Catalytic [21]
M349H and M349Y 21. 1% increases in specific activity as domain
compared with that of wild-type GBE,
respectively. Additionally, M349T and
M349S displayed 24. 2% and 17. 6%
enhancements in the o1, 6-glycosidic
linkage ratio of potato-starch samples,
respectively
Cyclodextrin D145A,R146A/ The R146A/D147P and R146P/D147A —7 site [22]
Glucosyltransferase D147P,R146P/ double mutants exhibited o-CD to total
DI147A CD production ratios of 75. 1% and
76.1% , which exceeded 63.2% from the
wild-type enzyme
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isomerase to obtain a mutant with a half-life 7. 65-fold longer than that of wild-type. They also screened a
pullulanase D437H/D503Y T mutant exhibiting a half-life 4. 3-fold longer than that of the wild-type variant
[15] through sequence alignment and structural simulation. With regard to the increased substrate
conversion, Oh et al. [16] screened an L-arabinose isomerase C450S/N475K mutant exhibiting a tagatose-
conversion rate increased by 20% as compared with the wild-type variant following a combination of
random and site-directed mutagenesis. Wu et al. [17] obtained a -galactosidase F441Y mutant capable of
a galactooligosaccharide yield of 61. 7% (wild-type: 50. 9%) through multiple-sequence alignments. To
increase the enzyme selectivity, mutations located near subsite +1 of maltooligosyltrehalose synthase were
performed by Tsueiyun et al. [18] in order to alter the ratio of hydrolysis to transglycosylation. MTSase
selectivity could be changed by altering hydrogen bonding and/or hydrophobic interactions between
substrate and enzyme at positions near subsite + 1 of the enzyme-substrate complex. Mutation of amino
acids at subsite + 2 of a-glucosidase performed by Min et al. [19] altered the hydrolysis and
transglycosylation reactions, resulting in accumulation of large amounts of isomaltose and isomaltotriose.
Besides, Liu et al. [20] obtained sucrose isomerase Q299E, AQ299, and Y296D mutants exhibiting
significant improvements in product specificity. Liu et al. [21] also found that a branching-enzyme M349T
mutant obtained through multiple-sequence alignment and structural analysis displayed a 24.2%
enhancement in the a-1, 6-glycosidic linkage ratio in potato-starch samples. Wang et al. [22] masked
subsite —7 of the active site by removing hydrogen-bonding interactions between the enzyme and substrate
to block the formation of larger CDs, resulting in increased specificity for the product o«-CD.

2.3 Truncated expression

Previous studies demonstrated that certain regions of enzyme-encoding genes are not required for
enzymatic activity [24; 25]; therefore, modification methods involving random or specific truncation of
genes are often used to increase enzyme-expression levels or to improve enzyme properties. Truncation can
be selected at single site or multiple sites, and the truncated enzyme can be directly obtained by truncation
at specific sites, or enzymes with excellent properties can also be screened by random truncation and
construction of a truncation library. Duan et al. [26] used a D437H/D503Y (DM) mutant of pullulanase
from Bacillus derami ficans as a starting strain to construct three N-terminal truncation variants from the
original DM that lacked the CBM41 domain (DM-T1), the CBM41 and X25 domains (DM-T2), or the
CBM41, X25, and X45 domains (DM-T3). After the expression, DM-T3 existed as an inclusion body,
whereas 72. 8% and 74. 8% of the total pullulanase activities of DM-T1 and DM-T2, respectively, were
secreted into the medium. The activities of the truncated enzymes were 2. 8- and 2. 9-fold higher than that
of the DM enzyme, respectively. Bai et al. [27] reported that an N-terminal truncation (amino acids 1—
733) of 4,6-a-glucanotransferase (4,6-a-GTase; GTFB) enzymes from Lactobacillus reuteri was strongly
enhanced in its soluble expression of GTFB-AN in Escherichia coli » which was ~75-fold higher than that
of full-length wild-type GTFB.

The structural modifications of key enzymes involved in functional saccharide production have been
analyzed. Mutation sites that can increase the thermostability and pH stability of enzymes are usually
located in loops and B-sheets, with enzyme stabilities increased by altering interactions between amino
acids. In contrast, mutation sites that change enzyme selectivity are usually located in the substrate-
binding regions of catalytic domains, whereas mutations near the catalytic center alter the specific activity
of the enzyme. Most mutation sites that change product specificity are located in the catalytic domains or
substrate-binding sites adjacent to the catalytic domains, which could significantly impact the specificity of
the products. Truncation of amino acid residues that are not required for enzyme activity can be used to

improve the soluble expression of the enzyme.
3 Efficient expression of enzymes

To meet consumers’ need, reducing the cost of functional saccharide production is particularly

important. The cost of key enzymes required for functional saccharide preparation accounts for a large
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proportion of the total cost of this process. Therefore, increasing the enzyme yield to reduce costs is of
great significance for the large-scale preparation of functional saccharides. Because the key enzymes
involved in functional saccharide production are food enzymes, the expression systems for these enzymes
are usually required to be generally recognized as safe (GRAS) microorganisms. In this context,
prokaryotic expression systems mainly include Bacillus expression systems [28], and eukaryotic
expression systems are mainly yeast [29] and mold expression systems [30].

3.1 Prokaryotic expression systems

The most well-studied and widely used prokaryotic expression system for saccharide enzymes is Bacillus
subtilis (Table 3) [31].

Table 3 Expression of key enzymes involved in functional saccharide production in prokaryotic expression systems

Host Enzyme Source Enzyme unit Ref.
B. subtilis alkaline amylase Alkaliphilic bacterium N10 591.4 U/mL [55]
B. subtilis R-CGTase Bacillus circulans 251 571.2U/mL [33]
B. subtilis a-amylase Geobacillus stearothermophilus 2300 U/mL [56]
B. subtilis a-amylase Bacillus licheni formis CICC 10181 1352 U/mL [56]
B. subtilis D-psicose 3-epimerase Ruminococcus sp. 5_1_39BFAA 95 U/mL [57]
B. subtilis 4-a-glucanotransferase Thermus scotoductus 6.0U/mL [39]
B. subtilis f-Mannanase Bacillus licheni formis DSM13 2207 U/mL [40]
B. subtilis Alkali-tolerant xylanase Bacillus pumilus BYG 327.2U/mL [41]
B. licheniformis trehalose synthase Thermomonos pora curvata JCM3096 24.7U/mL [44]
B. licheniformis a-amylase B. licheniformis 155 U/mL [43]
B. amylolique faciens a-amylase B. amylolique faciens 4800 U/mL [46]
B. amylolique faciens glutaminase B. amylolique faciens SW]S22 2690. 02 U/mg [48]
B. megaterium amylase B. megaterium 1666. 6 U/mL [51]
B. megaterium levansucrase SacB B. megaterium 0.42524 U/mL [53]
B. megaterium Levansucrase Lactobacillus reuteri 121 413.7U/mL [54]
3.1.1 The B. subtilis expression system

B. subtilis has long been used in food production. The earliest fermented food, “Natto”, is made from
soybeans fermented with B. subtilis [32]. B. subtilis is widely used in food-enzyme production as a
Bacillus model strain and has characteristics including non-pathogenicity, efficient protein expression, and
a clear genetic background. Most saccharide enzymes can be expressed well in B. subtilis. For example, -
CGTase, which is prone to forming inclusion bodies in E. coli, can be well secreted extracellularly in B.
subtilis, resulting in the highest enzyme activity reaching 571. 2 U/mL [33]. Recent research on the B.
subtilis expression system has mainly focused on modification of host bacteria and expression elements and
optimization of expression genes.

Wild-type B. subtilis produces a series of proteases, with the widely used B. subtilis WB600, WB700,
and WB800 strains derived from B. subtilis strain 168 through knockout of six, seven, and eight
proteases, respectively. The expression levels of food enzymes in B. subtilis can also be enhanced by
overexpression of chaperones or removal of specific chaperone-regulatory elements. Overexpression of the
chaperone prsA improved the folding of amylase in B. subtilis, thereby enhancing its resistance to protease
degradation [ 34].

Modification of expression elements has been focused on the screening and optimization of promoters and
signal peptides. Promoters used for expression in B. subtilis are mainly divided into constitutive,
inducible, stage-specific, and self-inducible promoters. The expression via a constitutive promoter does not
require the addition of an inducer that can be activated continuously at different stages of cell growth. The

P43 and Hpall promoters are commonly used constitutive promoters. The expression strength associated
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with constitutive promoters is usually strong, allowing proteins to be highly expressed during cell growth
and thereby affect cell growth. Inducible promoters need certain inducers to initiate the protein expression,
which can be well regulated to optimize cell growth and enzyme production. Isopropyl B-D-1-
thiogalactopyranoside (IPTG)-inducible promoters [35], sucrose-inducible promoters [36], and xylose-
inducible promoters [ 37 ] are commonly used. The IPTG-inducible promoter does not represent a strict
inducible promoter, as the induction strength is somewhat weak, and the inducer IPTG is toxic, resulting
in its limited industrial application. The industrial application of sucrose-inducible promoters is also limited
because of its weak expression strength. Compared with the aforementioned two inducible promoters,
xylose-inducible promoters are widely used in the expression of food enzymes. The expression of D-psicose
3-epimerase using a xylose-inducible promoter in a 7. 5-L fermenter reached 2. 6 g/L; however, the
problem is xylose is expensive. Stage-specific promoters are those that are active only when the cell is
grown to a specific stage and do not require the addition of an inducer. Self-inducible promoters can initiate
expression under conditions associated with thermal changes, ethanol stress, and salt, acid, or glucose
deprivation without the addition of inducers [ 38]. P,..r and P,, are common self-inducible promoters that
can be used to express proteins during high-cell-density fermentation. Recently, double-promoter-
expression systems have been studied based on their effectiveness at improving the expression of foreign
proteins. Compared with the single promoter P,,,o » the dual promoter Py,,u-P..,o can express a-CGTase,
B-CGTase, and pullulanase at 2. 9-, 1. 3-, and 1. 5-fold greater levels, respectively [33]. Dual promoters
consisting of an amylase promoter from B. subtilis NA64 or Bacillus licheni formis and the single
promoter Py, can express 4-a-CGTase at 11- and 12-fold higher levels relative to the single promoter
Pryen s respectively [39].

Since optimal signal peptides for different proteins are usually not the same, food-enzyme expression can
be improved through high-throughput screening of signal-peptide libraries for the optimal signal peptide.
The expression of B-mannanase in B. subtilis was optimized by screening the optimal signal peptide, SPy,, »
from six signal peptides. Combined with the overexpression of related chaperones and optimization of the
promoters, the final yield reached 2207 U/mL [40]. To optimize the expression of alkali-tolerant xylanase
in B. subtilis, the optimal signal peptide, SP .z, was determined by screening 114 Sec-type signal peptides
and 24 Tat-type signal peptides, followed by replacement of the original promoter, P,;, with the P,
promoter, resulting in the enzyme yield increasing to 327. 2 U/mL [41].

The expression levels of the same types of saccharide enzymes in B. subtilis from different sources can
differ greatly. For example, the yield of amylase from B. licheniformis and B. stearothermophilus was
90 U/mL and 111 U/mL, respectively; however, the specific activity of amylase from B.
stearothermophilus was 5. 1-fold higher than that from B. [licheniformis. To improve the enzyme
expression in B. subtilis, strategies including codon optimization, error-prone PCR, homologous
recombination, and gene truncation are often used.

3.1.2 Other Bacillus expression systems

In addition to the B. subtilis expression system, other Bacillus expression systems are used for food-
enzyme expression, including B. licheniformis, Bacillus amylolique faciens ., and Bacillus megaterium.
Strategies for improving the expression of saccharide enzymes in these expression systems are similar to
those used in B. subtilis, which include protease knockdown in host bacteria and/or overexpression of
chaperones, optimization of promoters and signal peptides in expression plasmids, codon optimization, and
mutation of the expression gene.

B. licheniformis is a saprophytic bacterium widely distributed in the environment [42]. Due to its
moderate growth rate, correct folding of foreign proteins can be guaranteed. Currently, saccharide
enzymes that were previously expressed in B. [licheniformis include a-amylase [43], B-glucanase,
trehalose synthase [44], and CD CGTase [45]. In contrast, B. amylolique faciens is commonly present in
soil and animal gut and can be easily separated and cultivated [31]. Food enzymes expressed in B.
amylolique faciens include amylase [46 ], a-glucosidase [47], pullulanase [47], and glutaminase [48]. B.
megaterium has been studied for > 100 years [49], and although it is not classified as a generally
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recognized as safe microorganisms, it is completely non-pathogenic and was classified as safe by the
German Federal Ministry of Food and Agriculture in 2013 [50]. B. megaterium does not produce
extracellular alkaline protease, presents plasmids that are genetically stable, and can use a wide range of
carbon sources, making them suitable for industrial fermentation. Currently, food enzymes expressed in
B. megaterium include amylase [51], B-galactosidase [52], and levansucrase [53; 54].
3.2 Eukaryotic expression systems

Eukaryotic expression systems for food-enzyme expression mainly consist of yeast and mold expression

systems (Table 4).

Table 4 Expression of key enzymes involved in functional saccharide production in eukaryotic expression systems

Enzyme unit

Host Enzyme Source (U/mL) Ref.
P. pastoris xylanase Streptomyces sp. FAI 1788 [61]
P. pastoris Maltooligosyltrehalose synthase Sul folobus acidocaldarius ATCC 33909 7A7.7 [62]
P. pastoris -mannanase Rhizomucor miehei 85200 [64]
P. pastoris -mannanase A. niger GIM3. 452 222.8 [75]
P. pastoris a-galactosidase A. niger 1299 [60]
P. pastoris a-galactosidase Rhizomucor miehei 1953.9 [76]
P. pastoris endo-polygalacturonase Aspergillus aculeatus 2408. 7 [65]
S. cerevisiae B-1,3-1,4-glucanase B. subtilis 45.1 [63]
A. niger xylanase A. niger CICC2462 4495.9 [74]
A. niger glucoamylase A. niger 274 [70]
A. niger glucoamylase Talaromyces stipitatus 800 [71]

3.2.1 Yeast expression systems

Yeasts are eukaryotic, single-celled microorganisms that exhibit similar advantages to those of
prokaryotic and eukaryotic hosts. They are safe, reliable, and grow rapidly with simple cultivation. The
most prominent feature of yeasts is their ability to recognize eukaryotic genes and transcribe and translate
them into active proteins. As protein-expression systems, yeast has been widely used in the field of genetic
engineering, with several expression systems developed, including those associated with Pichia pastoris .,
Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, and Candida utilis.
Among them, S. cerevisiae and P. pastoris are most commonly used [58; 59]. Most eukaryotic food
enzymes can be expressed in yeast expression systems, which allow easy cultivation, enable mutagenesis
and gene-function studies, and possess the capacity for protein post-translational processing.

Many types of saccharide enzymes are currently expressed in the yeast expression systems. One study
reported optimization of a-galactosidase expression in P. pastoris through codon optimization, signal-
peptide replacement, and comparative selection of host strains and saturation mutagenesis of protease
sites, resulting in enzyme activity of 1299 U/mL from a 2-I. fermentation and which was 12-fold higher
than that in unaltered recombinant P. pastoris [60]. Additionally, optimization of induction temperature
and time, as well as methanol concentration, enhanced the activity of xylanase expressed in recombinant
P. pastoris in a 3. 6-L. fermenter to 1374 U/mL after 132 h of fermentation [61]. Similarly, the activity of
maltooligosyltrehalose synthase expressed in recombinant P. pastoris in a 3. 6-1. fermenter reached
747.3 U/mL after a 96-h fermentation by optimizing the same expression parameters [62]. Other food
enzymes expressed in yeast expression systems include $-1,3-1,4-glucanase [63], B-mannanase [ 64], and
endo-polygalacturonase [65].

3.2.2 Mold expression systems

Aspergillus niger is a well-studied and commonly used expression system for the expression of

saccharide enzymes. A. niger has a clear genetic background and strong ability to secrete extracellular

proteins, including amylase, and have long been used in the industrial production of food and medicine,
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given their classification as a safe strain [66]. The use of filamentous fungi, such as A. niger, to express
enzymes has become a primary method for enzyme production in China since 2013. Among 52 types of
food-enzyme preparations in China (GB2760-2011), 17 are produced using the genetically modified
Aspergillus strains; however, endogenous enzymes, including glucoamylase and a-amylase, from A.
niger affect the purity of expressed proteins, impeding its use for further exogenous enzyme separation and
purification. The background expression of amylases can be reduced by knocking out the amyR gene in the
genome [ 67 ]. Most proteins expressed in A. niger undergo glycosylation, which can affect their functions
and properties, including half-life [68]. Strategies to improve the exogenous protein expression in A.
niger include use of strong homologous promoters, increasing the copy number of expressed genes, co-
expression of chaperones, knockout of proteases, selection of random mutations, gene-fusion expression,
and optimization of fermentation conditions [ 69 ].

Many types of food enzymes have been expressed using the A. niger expression system. A previous
study reported that glucoamylase and glucose were produced using potato waste fermented by A. niger.
Using the following optimized medium, expression of the two products increased by 126% and 98% to
274 U/ml and 41.7 g/L, respectively [70]. Fourteen predicted amylase genes and nine predicted
glucoamylase genes were identified and recombinantly expressed in E. coli and A. niger, resulting in
screening of glucoamylase from Talaromyces stipitatus capable of raw starch digestion, with subsequent
enzyme expression in A. niger reaching 800 U/mL in a 20-L fermenter [71]. Studies on the effect of
carbon repressors on food-enzyme secretion during solid-state fermentation of A. niger revealed that
certain concentrations of glucose help cells produce moonlighting proteins, which are essential in the
classical secretory pathway. Compared with the medium containing only starch, amylase and glucoamylase
activities increased 8-fold and between 20- and 29-fold in the medium containing starch and glucose (60—120 g/1.)
[72]. Other food enzymes expressed in A. niger include B-mannase [73], o-galactosidase, and

xylanase [74].
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